DONATE

Staff member

Xavier Fernàndez-Busquets

Group Leader
+34 93 227 5400 ext 4581
xfernandezibecbarcelona.eu
CV Summary
Xavier Fernàndez-Busquets is Head of the Nanomalaria Joint Unit at the Institute for Bioengineering of Catalonia and the Barcelona Centre for International Health Research. He got his PhD in Biochemistry at the Universitat Autònoma de Barcelona. He has been a visiting scientist at CIBA-GEIGY AG (Basel, Switzerland) and a postdoctoral fellow at the Friedrich Miescher Institute (Basel) and the Marine Biological Laboratory (Woods Hole, US) from 1993 to 1999, and at the Universitat de Barcelona until 2001, when he obtained a Ramón y Cajal grant to start his research on Nanomedicine.
Staff member publications

Avalos-Padilla, Y, Fernandez-Busquets, X, (2024). Nanotherapeutics against malaria: A decade of advancements in experimental models Wiley Interdisciplinary Reviews-Nanomedicine And Nanobiotechnology 16, e1943

Malaria, caused by different species of protists of the genus Plasmodium, remains among the most common causes of death due to parasitic diseases worldwide, mainly for children aged under 5. One of the main obstacles to malaria eradication is the speed with which the pathogen evolves resistance to the drug schemes developed against it. For this reason, it remains urgent to find innovative therapeutic strategies offering sufficient specificity against the parasite to minimize resistance evolution and drug side effects. In this context, nanotechnology-based approaches are now being explored for their use as antimalarial drug delivery platforms due to the wide range of advantages and tuneable properties that they offer. However, major challenges remain to be addressed to provide a cost-efficient and targeted therapeutic strategy contributing to malaria eradication. The present work contains a systematic review of nanotechnology-based antimalarial drug delivery systems generated during the last 10 years. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease

JTD Keywords: Adjuvant system, Antimalarial activities, Antimalarial agent, Antimalarial drug, Antimalarial drugs, Antimalarials, Artemisinin resistance, Causes of death, Child, Controlled drug delivery, Diseases, Drug delivery system, Drug delivery systems, Drug interactions, Drug side-effects, Drug-delivery, Experimental modelling, Heparan-sulfate, Human, Humans, In-vitro, Malaria, Malaria vaccine, Mannosylated liposomes, Medical nanotechnology, Models, theoretical, Nanocarriers, Nanomedicine, Nanotechnology, Parasite-, Parasitics, Plasmodium, Plasmodium-falciparum malaria, Red-blood-cells, Targeted delivery, Targeted drug delivery, Theoretical model, Therapeutic strategy


Román-Alamo, L, Avalos-Padilla, Y, Bouzón-Arnáiz, I, Iglesias, V, Fernández-Lajo, J, Monteiro, JM, Rivas, L, Fisa, R, Riera, C, Andreu, D, Pintado-Grima, C, Ventura, S, Arce, EM, Muñoz-Torrero, D, Fernàndez-Busquets, X, (2024). Effect of the aggregated protein dye YAT2150 on Leishmania parasite viability Antimicrobial Agents And Chemotherapy 68, e01127-23

The problems associated with the drugs currently used to treat leishmaniasis, including resistance, toxicity, and the high cost of some formulations, call for the urgent identification of new therapeutic agents with novel modes of action. The aggregated protein dye YAT2150 has been found to be a potent antileishmanial compound, with a half-maximal inhibitory concentration (IC50) of approximately 0.5 mu M against promastigote and amastigote stages of Leishmania infantum. The encapsulation in liposomes of YAT2150 significantly improved its in vitro IC50 to 0.37 and 0.19 mu M in promastigotes and amastigotes, respectively, and increased the half-maximal cytotoxic concentration in human umbilical vein endothelial cells to >50 mu M. YAT2150 became strongly fluorescent when binding intracellular protein deposits in Leishmania cells. This fluorescence pattern aligns with the proposed mode of action of this drug in the malaria parasite Plasmodium falciparum, the inhibition of protein aggregation. In Leishmania major, YAT2150 rapidly reduced ATP levels, suggesting an alternative antileishmanial mechanism. To the best of our knowledge, this first-in-class compound is the only one described so far having significant activity against both Plasmodium and Leishmania, thus being a potential drug for the treatment of co-infections of both parasites.

JTD Keywords: Animal, Animals, Antileishmanial drugs, Antiprotozoal agent, Antiprotozoal agents, Axenic amastigotes, Colocalization, Differentiation, Discovery, Endothelial cells, Endothelium cell, Human, Humans, Identification, Leishmania, Leishmania infantum, Leishmaniasis, Parasite, Parasites, Protein aggregation, Yat2150, Yeast


Fulgheri, F, Manca, ML, Fernàndez-Busquets, X, Manconi, M, (2023). Analysis of complementarities between nanomedicine and phytodrugs for the treatment of malarial infection Nanomedicine 18, 1681-1696

The use of nanocarriers in medicine, so-called nanomedicine, is one of the most innovative strategies for targeting drugs at the action site and increasing their activity index and effectiveness. Phytomedicine is the oldest traditional method used to treat human diseases and solve health problems. The recent literature on the treatment of malaria infections using nanodelivery systems and phytodrugs or supplements has been analyzed. For the first time, in the present review, a careful look at the considerable potential of nanomedicine in promoting phytotherapeutic efficacy was done, and its key role in addressing a translation through a significant reduction of the current burden of malaria in many parts of the world has been underlined.

JTD Keywords: antiplasmodial activity, bioavailability, chloroquine, combination therapy, discovery, drug-delivery, drug-delivery systems, nanocapsules, nanomedicine, natural molecules, pharmacokinetics, phytomedicine, plasmodium-falciparum, Artemisinin-based combination therapy, Drug-delivery systems, Nanomedicine, Natural molecules, Phytomedicine, Solid lipid nanoparticles


Fonte, M, Fontinha, D, Moita, D, Caño-Prades, O, Avalos-Padilla, Y, Fernàndez-Busquets, X, Prudencio, M, Gomes, P, Teixeira, C, (2023). New 4-(N-cinnamoylbutyl)aminoacridines as potential multi-stage antiplasmodial leads European Journal Of Medicinal Chemistry 258, 115575

A novel family of 4-aminoacridine derivatives was obtained by linking this heteroaromatic core to different trans-cinnamic acids. The 4-(N-cinnamoylbutyl)aminoacridines obtained exhibited in vitro activity in the low- or sub-micromolar range against (i) hepatic stages of Plasmodium berghei, (ii) erythrocytic forms of Plasmodium falciparum, and (iii) early and mature gametocytes of Plasmodium falciparum. The most active compound, having a meta-fluorocinnamoyl group linked to the acridine core, was 20- and 120-fold more potent, respectively, against the hepatic and gametocyte stages of Plasmodium infection than the reference drug, primaquine. Moreover, no cytotoxicity towards mammalian and red blood cells at the concentrations tested was observed for any of the compounds under investigation. These novel conjugates represent promising leads for the development of new multi-target antiplasmodials.Copyright © 2023 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

JTD Keywords: agents, analogs, antimalarial, artemisinin, blood-stage, cinnamic acid, gametocyte, hybrid, liver-stage, malaria, multi-target, plasmodium-falciparum, primaquine, quinacrine, resistance, Acridine, Antimalarial, Blood-stage, Cinnamic acid, Cinnamic acid-derivatives, Gametocyte, Hybrid, Liver-stage, Multi-target


Fulgheri, F, Aroffu, M, Ramírez, M, Román-Alamo, L, Peris, JE, Usach, I, Nacher, A, Manconi, M, Fernàndez-Busquets, X, Manca, ML, (2023). Curcumin or quercetin loaded nutriosomes as oral adjuvants for malaria infections International Journal Of Pharmaceutics 643, 123195

Artemisinin, curcumin or quercetin, alone or in combination, were loaded in nutriosomes, special phospholipid vesicles enriched with Nutriose FM06®, a soluble dextrin with prebiotic activity, that makes these vesicles suitable for oral delivery. The resulting nutriosomes were sized between 93 and 146 nm, homogeneously dispersed, and had slightly negative zeta potential (around -8 mV). To improve their shelf life and storability over time, vesicle dispersions were freeze-dried and stored at 25 °C. Results confirmed that their main physico-chemical characteristics remained unchanged over a period of 12 months. Additionally, their size and polydispersity index did not undergo any significant variation after dilution with solutions at different pHs (1.2 and 7.0) and high ionic strength, mimicking the harsh conditions of the stomach and intestine. An in vitro study disclosed the delayed release of curcumin and quercetin from nutriosomes (∼53% at 48 h) while artemisinin was quickly released (∼100% at 48 h). Cytotoxicity assays using human colon adenocarcinoma cells (Caco-2) and human umbilical vein endothelial cells (HUVECs) proved the high biocompatibility of the prepared formulations. Finally, in vitro antimalarial activity tests, assessed against the 3D7 strain of Plasmodium falciparum, confirmed the effectiveness of nutriosomes in the delivery of curcumin and quercetin, which can be used as adjuvants in the antimalaria treatment. The efficacy of artemisinin was also confirmed but not improved. Overall results proved the possible use of these formulations as an accompanying treatment of malaria infections.Copyright © 2023. Published by Elsevier B.V.

JTD Keywords: artemisinin, delivery, flavonol, formulations, liposomes, malaria infections, nanomedicine, nutriose (r) fm06, oral administration, plasmodium falciparum, In-vitro, Liposomes, Malaria infections, Nanomedicine, Nutriose® fm06, Oral administration, Plasmodium falciparum


Roman-Alamo, L, Allaw, M, Avalos-Padilla, Y, Manca, ML, Manconi, M, Fulgheri, F, Fernandez-Lajo, J, Rivas, L, Vazquez, JA, Peris, JE, Roca-Gerones, X, Poonlaphdecha, S, Alcover, MM, Fisa, R, Riera, C, Fernandez-Busquets, X, (2023). In Vitro Evaluation of Aerosol Therapy with Pentamidine-Loaded Liposomes Coated with Chondroitin Sulfate or Heparin for the Treatment of Leishmaniasis Pharmaceutics 15, 1163

The second-line antileishmanial compound pentamidine is administered intramuscularly or, preferably, by intravenous infusion, with its use limited by severe adverse effects, including diabetes, severe hypoglycemia, myocarditis and renal toxicity. We sought to test the potential of phospholipid vesicles to improve the patient compliance and efficacy of this drug for the treatment of leishmaniasis by means of aerosol therapy. The targeting to macrophages of pentamidine-loaded liposomes coated with chondroitin sulfate or heparin increased about twofold (up to ca. 90%) relative to noncoated liposomes. The encapsulation of pentamidine in liposomes ameliorated its activity on the amastigote and promastigote forms of Leishmania infantum and Leishmania pifanoi, and it significantly reduced cytotoxicity on human umbilical endothelial cells, for which the concentration inhibiting 50% of cell viability was 144.2 ± 12.7 µM for pentamidine-containing heparin-coated liposomes vs. 59.3 ± 4.9 µM for free pentamidine. The deposition of liposome dispersions after nebulization was evaluated with the Next Generation Impactor, which mimics human airways. Approximately 53% of total initial pentamidine in solution reached the deeper stages of the impactor, with a median aerodynamic diameter of ~2.8 µm, supporting a partial deposition on the lung alveoli. Upon loading pentamidine in phospholipid vesicles, its deposition in the deeper stages significantly increased up to ~68%, and the median aerodynamic diameter decreased to a range between 1.4 and 1.8 µm, suggesting a better aptitude to reach the deeper lung airways in higher amounts. In all, nebulization of liposome-encapsulated pentamidine improved the bioavailability of this neglected drug by a patient-friendly delivery route amenable to self-administration, paving the way for the treatment of leishmaniasis and other infections where pentamidine is active.

JTD Keywords: aerosol therapy, delivery-systems, drug encapsulation, drugs, ex-vivo models, formulation, leishmania infantum, leishmania pifanoi, leishmaniasis, liposomes, macrophages, miltefosine, pentamidine, pharmacology, pulmonary absorption, visceral leishmaniasis, Amphotericin-b treatment, Leishmania infantum, Pentamidine


Hamelmann, NM, Paats, JWD, Avalos-Padilla, Y, Lantero, E, Siden-Kiamos, I, Spanos, L, Fernandez-Busquets, X, Paulusse, JMJ, (2023). Single-Chain Polymer Nanoparticles Targeting the Ookinete Stage of Malaria Parasites Acs Infectious Diseases 9, 56-64

Malaria is an infectious disease transmitted by mosquitos, whose control is hampered by drug resistance evolution in the causing agent, protist parasites of the genus Plasmodium, as well as by the resistance of the mosquito to insecticides. New approaches to fight this disease are, therefore, needed. Research into targeted drug delivery is expanding as this strategy increases treatment efficacies. Alternatively, targeting the parasite in humans, here we use single-chain polymer nanoparticles (SCNPs) to target the parasite at the ookinete stage, which is one of the stages in the mosquito. This nanocarrier system provides uniquely sized and monodispersed particles of 5-20 nm, via thiol-Michael addition. The conjugation of succinic anhydride to the SCNP surface provides negative surface charges that have been shown to increase the targeting ability of SCNPs to Plasmodium berghei ookinetes. The biodistribution of SCNPs in mosquitos was studied, showing the presence of SCNPs in mosquito midguts. The presented results demonstrate the potential of anionic SCNPs for the targeting of malaria parasites in mosquitos and may lead to progress in the fight against malaria.

JTD Keywords: antimalarial, atovaquone, carriers, delivery, drug-conjugate, heparin, intramolecular crosslinking, plasmodium berghei, therapy, thiol-michael addition, transmission, Atovaquone, Drug-conjugate, Intramolecular crosslinking, Plasmodium berghei, Plasmodium-falciparum, Single chain polymer nanoparticles, Thiol-michael addition


Roca, C, Avalos-Padilla, Y, Prieto-Simon, B, Iglesias, V, Ramirez, M, Imperial, S, Fernandez-Busquets, X, (2022). Selection of an Aptamer against the Enzyme 1-deoxy-D-xylulose-5-phosphate Reductoisomerase from Plasmodium falciparum Pharmaceutics 14, 2515

The methyl erythritol phosphate (MEP) pathway of isoprenoid biosynthesis is essential for malaria parasites and also for several human pathogenic bacteria, thus representing an interesting target for future antimalarials and antibiotics and for diagnostic strategies. We have developed a DNA aptamer (D10) against Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), the second enzyme of this metabolic route. D10 binds in vitro to recombinant DXR from P. falciparum and Escherichia coli, showing at 10 mu M a ca. 50% inhibition of the bacterial enzyme. In silico docking analysis indicates that D10 associates with DXR in solvent-exposed regions outside the active center pocket. According to fluorescence confocal microscopy data, this aptamer specifically targets in P. falciparum in vitro cultures the apicoplast organelle where the MEP pathway is localized and is, therefore, a highly specific marker of red blood cells parasitized by Plasmodium vs. naive erythrocytes. D10 is also selective for the detection of MEP+ bacteria (e.g., E. coli and Pseudomonas aeruginosa) vs. those lacking DXR (e.g., Enterococcus faecalis). Based on these results, we discuss the potential of DNA aptamers in the development of ligands that can outcompete the performance of the well-established antibody technology for future therapeutic and diagnostic approaches.

JTD Keywords: 1-deoxy-d-xylulose-5-phosphate reductoisomerase, dna aptamers, plasmodium, 1-deoxy-d-xylulose-5-phosphate reductoisomerase, Apicoplast, Dna aptamers, Drug targets, Evolution, Inhibitors, Isoprenoid biosynthesis, Malaria, Methyl erythritol phosphate pathway, Pathway, Plasmodium, Protein-protein, Web server


Bouzon-Arnaiz, I, Avalos-Padilla, Y, Biosca, A, Cano-Prades, O, Roman-Alamo, L, Valle, J, Andreu, D, Moita, D, Prudencio, M, Arce, EM, Munoz-Torrero, D, Fernandez-Busquets, X, (2022). The protein aggregation inhibitor YAT2150 has potent antimalarial activity in Plasmodium falciparum in vitro cultures Bmc Biology 20, 197

Background By 2016, signs of emergence of Plasmodium falciparum resistance to artemisinin and partner drugs were detected in the Greater Mekong Subregion. Recently, the independent evolution of artemisinin resistance has also been reported in Africa and South America. This alarming scenario calls for the urgent development of new antimalarials with novel modes of action. We investigated the interference with protein aggregation, which is potentially toxic for the cell and occurs abundantly in all Plasmodium stages, as a hitherto unexplored drug target in the pathogen. Results Attempts to exacerbate the P. falciparum proteome's propensity to aggregation by delivering endogenous aggregative peptides to in vitro cultures of this parasite did not significantly affect their growth. In contrast, protein aggregation inhibitors clearly reduced the pathogen's viability. One such compound, the bis(styrylpyridinium) salt YAT2150, exhibited potent antiplasmodial activity with an in vitro IC50 of 90 nM for chloroquine- and artemisinin-resistant lines, arresting asexual blood parasites at the trophozoite stage, as well as interfering with the development of both sexual and hepatic forms of Plasmodium. At its IC50, this compound is a powerful inhibitor of the aggregation of the model amyloid beta peptide fragment 1-40, and it reduces the amount of aggregated proteins in P. falciparum cultures, suggesting that the underlying antimalarial mechanism consists in a generalized impairment of proteostasis in the pathogen. YAT2150 has an easy, rapid, and inexpensive synthesis, and because it fluoresces when it accumulates in its main localization in the Plasmodium cytosol, it is a theranostic agent. Conclusions Inhibiting protein aggregation in Plasmodium significantly reduces the parasite's viability in vitro. Since YAT2150 belongs to a novel structural class of antiplasmodials with a mode of action that potentially targets multiple gene products, rapid evolution of resistance to this drug is unlikely to occur, making it a promising compound for the post-artemisinin era.

JTD Keywords: amyloid pan-inhibitors, antimalarial drugs, malaria, plasmodium falciparum, protein aggregation, Amyloid formation, Amyloid pan-inhibitors, Antimalarial drugs, Colocalization, Cytosolic delivery, Derivatives, Disease, Drug, In-vitro, Malaria, Mechanism, Plasmodium falciparum, Polyglutamine, Protein aggregation, Yat2150


Molina-Fernandez, R, Picon-Pages, P, Barranco-Almohalla, A, Crepin, G, Herrera-Fernandez, V, Garcia-Elias, A, Fanlo-Ucar, H, Fernandez-Busquets, X, Garcia-Ojalvo, J, Oliva, B, Munoz, FJ, (2022). Differential regulation of insulin signalling by monomeric and oligomeric amyloid beta-peptide Brain Commun 4, fcac243

Alzheimer's disease and Type 2 diabetes are pathological processes associated to ageing. Moreover, there are evidences supporting a mechanistic link between Alzheimer's disease and insulin resistance (one of the first hallmarks of Type 2 diabetes). Regarding Alzheimer's disease, amyloid beta-peptide aggregation into beta-sheets is the main hallmark of Alzheimer's disease. At monomeric state, amyloid beta-peptide is not toxic but its function in brain, if any, is unknown. Here we show, by in silico study, that monomeric amyloid beta-peptide 1-40 shares the tertiary structure with insulin and is thereby able to bind and activate insulin receptor. We validated this prediction experimentally by treating human neuroblastoma cells with increasing concentrations of monomeric amyloid. beta-peptide 1-40. Our results confirm that monomeric amyloid beta-peptide 1-40 activates insulin receptor autophosphorylation, triggering downstream enzyme phosphorylarions and the glucose Transporter 4 translocation to the membrane. On the other hand, neuronal insulin resistance is known to be associated to Alzheimer's disease since early stages. We thus modelled the docking of oligomeric amyloid peptide 1-40 to insulin receptor. We found that oligomeric amyloid. beta-peptide 1-40 blocks insulin receptor, impairing its activation. It was confirmed in vitro by observing the lack of insulin receptor autophosphorylation, and also the impairment of insulin-induced intracellular enzyme activations and the glucose Transporter 4 translocation to the membrane. By biological system analysis, we have carried out a mathematical model recapitulating the process that turns amyloid beta-peptide binding to insulin receptor from the physiological to the pathophysiological regime. Our results suggest that monomeric amyloid beta-peptide 1-40 contributes to mimic insulin effects in the brain, which could be good when neurons have an extra requirement of energy beside the well-known protective effects on insulin intracellular signalling, while its accumulation and subsequent oligomerization blocks the insulin receptor producing insulin resistance and compromising neuronal metabolism and protective pathways.

JTD Keywords: akt, alzheimer’s disease, amyloid β-peptide, insulin, A-beta, Aggregation, Akt, Alzheimer's disease, Alzheimers-disease, Amyloid beta-peptide, Brain, Design, Insulin, Insulin resistance, Precursor protein, Protein-protein docking, Receptor, Resistance, Site


Perra, M, Manca, ML, Tuberoso, CIG, Caddeo, C, Marongiu, F, Peris, JE, Orru, G, Ibba, A, Fernandez-Busquets, X, Fattouch, S, Bacchetta, G, Manconi, M, (2022). A green and cost-effective approach for the efficient conversion of grape byproducts into innovative delivery systems tailored to ensure intestinal protection and gut microbiota fortification Innovative Food Science & Emerging Technologies 80, 103103

According to circular economy, wine-making by-products represent a fascinating biomass, which can be used for the sustainable exploitation of polyphenols and the development of new nanotechnological health-promoting products. In this study, polyphenols contained in the grape pomace were extracted by maceration with ethanol in an easy and low dissipative way. The obtained extract, rich in malvidin-3-glucoside, quercetin, pro-cyanidin B2 and gallic acid, was incorporated into phospholipid vesicles tailored for intestinal delivery. To improve their performances, vesicles were enriched with gelatine or a maltodextrin (Nutriose (R)), or their com-bination (gelatine-liposomes, nutriosomes and gelatine-nutriosomes). The small (-147 nm) and negatively charged (--50mV) vesicles were stable at different pH values mimicking saliva (6.75), gastric (1.20) and intestinal (7.00) environments. Vesicles effectively protected intestinal cells (Caco-2) from the oxidative stress and promoted the biofilm formation by probiotic bacteria. A preliminary evaluation of the vesicle feasibility at industrial levels was also performed, analysing the economic and energetic costs needed for their production.

JTD Keywords: Adhesion, Antioxidant activity, Caco-2 cells, Dextrin, Grape pomace extract, Lactobacillus-reuteri, Manufacturing costs, Oxidative stress, Ph, Phospholipid vesicles, Polyphenols, Probiotic bacteria, Protein


Biosca, A, Ramirez, M, Gomez-Gomez, A, Lafuente, A, Iglesias, V, Pozo, OJ, Imperial, S, Fernandez-Busquets, X, (2022). Characterization of Domiphen Bromide as a New Fast-Acting Antiplasmodial Agent Inhibiting the Apicoplastidic Methyl Erythritol Phosphate Pathway Pharmaceutics 14, 1320

The evolution of resistance by the malaria parasite to artemisinin, the key component of the combination therapy strategies that are at the core of current antimalarial treatments, calls for the urgent identification of new fast-acting antimalarials. The apicoplast organelle is a preferred target of antimalarial drugs because it contains biochemical processes absent from the human host. Fosmidomycin is the only drug in clinical trials targeting the apicoplast, where it inhibits the methyl erythritol phosphate (MEP) pathway. Here, we characterized the antiplasmodial activity of domiphen bromide (DB), another MEP pathway inhibitor with a rapid mode of action that arrests the in vitro growth of Plasmodium falciparum at the early trophozoite stage. Metabolomic analysis of the MEP pathway and Krebs cycle intermediates in 20 mu M DB-treated parasites suggested a rapid activation of glycolysis with a concomitant decrease in mitochondrial activity, consistent with a rapid killing of the pathogen. These results present DB as a model compound for the development of new, potentially interesting drugs for future antimalarial combination therapies.

JTD Keywords: antibiotics, antimalarial drugs, domiphen bromide, malaria, plasmodium falciparum, Antibiotics, Antimalarial drugs, Antimalarial-drug, Artemisinin, Combination therapies, Domiphen bromide, Intraerythrocytic stages, Isoprenoid biosynthesis, Malaria, Methyl erythritol phosphate pathway, Nonmevalonate pathway, Plasmodium falciparum, Plasmodium-falciparum apicoplast, Red-blood-cells, Targeted delivery


De Luca, M, Lucchesi, D, Tuberoso, CIG, Fernàndez-Busquets, X, Vassallo, A, Martelli, G, Fadda, AM, Pucci, L, Caddeo, C, (2022). Liposomal Formulations to Improve Antioxidant Power of Myrtle Berry Extract for Potential Skin Application Pharmaceutics 14, 910

Many substances in plant extracts are known for their biological activities. These substances act in different ways, exerting overall protective effects against many diseases, especially skin disorders. However, plant extracts’ health benefits are often limited by low bioavailability. To overcome these limitations, drug delivery systems can be employed. In this study, we evaluated the antioxidant power of an ethanolic extract from Myrtus communis L. (myrtle) berries through colorimetric tests (DPPH and FRAP). The antioxidant activity was also verified by using fibroblast cell culture through cellular Reactive Oxygen Species (ROS) levels measurements. Moreover, the myrtle extract was formulated in phospholipid vesicles to improve its bioavailability and applicability. Myrtle liposomes were characterized by size, surface charge, storage stability, and entrapment efficiency; visualized by using cryo-TEM images; and assayed for cytocompatibility and anti-ROS activity. Our results suggest that myrtle liposomes were cytocompatible and improved the extract’s antioxidant power in fibroblasts, suggesting a potential skin application for these formulations and confirming that nanotechnologies could be a valid tool to enhance plant extracts’ potentialities.

JTD Keywords: antioxidant, bioactive compounds, capacity, essential oils, fibroblast, liposomes, myrtle extract, skin, Communis l., Myrtle extract, Skin


Georgiev, VN, Avalos-Padilla, Y, Fernàndez-Busquets, X, Dimova, R, (2022). Femtoliter Injection of ESCRT-III Proteins into Adhered Giant Unilamellar Vesicles Bio Protoc 12, e4328

The endosomal sorting complex required for transport (ESCRT) machinery mediates membrane fission reactions that exhibit a different topology from that observed in clathrin-coated vesicles. In all of the ESCRT-mediated events, the nascent vesicle buds away from the cytosol. However, ESCRT proteins are able to act upon membranes with different geometries. For instance, the formation of multivesicular bodies (MVBs) and the biogenesis of extracellular vesicles both require the participation of the ESCRT-III sub-complex, and they differ in their initial membrane geometry before budding starts: the protein complex acts either from outside the membrane organelle (causing inward budding) or from within (causing outward budding). Several studies have reconstituted the action of the ESCRT-III subunits in supported bilayers and cell-sized vesicles mimicking the geometry occurring during MVBs formation (in-bud), but extracellular vesicle budding (out-bud) mechanisms remain less explored, because of the outstanding difficulties encountered in encapsulation of functional ESCRT-III in vesicles. Here, we provide a different approach that allows the recreation of the out-bud formation, by combining giant unilamellar vesicles as a membrane model and a microinjection system. The vesicles are immobilized prior to injection via weak adhesion to the chamber coverslip, which also ensures preserving the membrane excess area required for budding. After protein injection, vesicles exhibit outward budding. The approach presented in this work can be used in the future to disentangle the mechanisms underlying ESCRT-III-mediated fission, recreating the geometry of extracellular bud production, which remains a challenge. Moreover, the microinjection methodology can be also adapted to interrogate the action of other cytosolic components on the encapsulating membranous organelle. Copyright: © 2022 The Authors.

JTD Keywords: adhesion, budding, electroformation, escrt-iii, exosomes, extracellular vesicles, giant unilamellar vesicle (guv), light, microinjection, microparticles, plasma, Adhesion, Budding, Escrt-iii, Extracellular vesicles, Giant unilamellar vesicle (guv), Membrane, Microinjection


Guasch-Girbau, A, Fernandez-Busquets, X, (2021). Review of the current landscape of the potential of nanotechnology for future malaria diagnosis, treatment, and vaccination strategies Pharmaceutics 13, 2189

Malaria eradication has for decades been on the global health agenda, but the causative agents of the disease, several species of the protist parasite Plasmodium, have evolved mechanisms to evade vaccine-induced immunity and to rapidly acquire resistance against all drugs entering clinical use. Because classical antimalarial approaches have consistently failed, new strategies must be explored. One of these is nanomedicine, the application of manipulation and fabrication technology in the range of molecular dimensions between 1 and 100 nm, to the development of new medical solutions. Here we review the current state of the art in malaria diagnosis, prevention, and therapy and how nanotechnology is already having an incipient impact in improving them. In the second half of this review, the next generation of antimalarial drugs currently in the clinical pipeline is presented, with a definition of these drugs’ target product profiles and an assessment of the potential role of nanotechnology in their development. Opinions extracted from interviews with experts in the fields of nanomedicine, clinical malaria, and the economic landscape of the disease are included to offer a wider scope of the current requirements to win the fight against malaria and of how nanoscience can contribute to achieve them. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: antibody-bearing liposomes, antimalarial drugs, combination therapies, drug-delivery strategies, malaria diagnosis, malaria prophylaxis, malaria therapy, nanocarriers, nanomedicine, nanoparticles, nanotechnology, plasmodium, plasmodium-falciparum, red-blood-cells, targeted delivery, targeted drug delivery, vitro antimalarial activity, Antimalarial drugs, Isothermal amplification lamp, Malaria diagnosis, Malaria prophylaxis, Malaria therapy, Nanocarriers, Nanomedicine, Nanotechnology, Plasmodium, Targeted drug delivery


Caddeo, C, Lucchesi, D, Fernàndez-Busquets, X, Valenti, D, Penno, G, Fadda, AM, Pucci, L, (2021). Efficacy of a resveratrol nanoformulation based on a commercially available liposomal platform International Journal Of Pharmaceutics 608, 121086

Scalability is one of the important factors slowing down or even impeding the clinical translation of nanoparticle-based systems. The latter need to be manufactured at a high level of quality, with batch-to-batch reproducibility, and need to be stable after the manufacturing process, during long-term storage and upon clinical administration. In this study, a vesicular formulation intended for cutaneous applications was developed by the easy reconstitution of a commercially available liposomal platform. Resveratrol, a naturally occurring compound with potent antioxidant activity, and Tween80, a hydrophilic non-ionic surfactant, were included in the formulation. The physico-chemical properties of the vesicles were assessed using light scattering and cryogenic transmission electron microscopy. Nanosized (around 80 nm) spherical and elongated, unilamellar vesicles were produced, with remarkable storage stability. The incorporation of resveratrol in the vesicular system did not alter its strong antioxidant activity, as demonstrated by antioxidant colorimetric assays (DPPH and FRAP). Furthermore, the resveratrol liposomes were cytocompatible with fibroblasts and capable of protecting skin cells from oxidative stress by reducing both endogenous and chemically induced reactive oxygen species more effectively than free resveratrol. Therefore, the proposed formulation, based on the use of a commercially available liposomal platform, represents an easy-to-prepare, reproducible, up-scaled and efficient means of delivering resveratrol and potentiating its biological activity in vitro.

JTD Keywords: antioxidant, commercial liposomes, resveratrol, skin cells, skin delivery, Antioxidant, Commercial liposomes, Drug-delivery, Resveratrol, Skin cells, Skin delivery


Grob, M, Anselmetti, D, Fernandez-Busquets, X, (2021). In memory of Max Burger Journal Of Cellular Biochemistry 122, 1259-1261

de la Serna, E, Arias-Alpízar, K, Borgheti-Cardoso, LN, Sanchez-Cano, A, Sulleiro, E, Zarzuela, F, Bosch-Nicolau, P, Salvador, F, Molina, I, Ramírez, M, Fernàndez-Busquets, X, Sánchez-Montalvá, A, Baldrich, E, (2021). Detection of Plasmodium falciparum malaria in 1 h using a simplified enzyme-linked immunosorbent assay Analytica Chimica Acta 1152, 338254

© 2021 Elsevier B.V. Malaria is a parasitic disease caused by protists of the genus Plasmodium, which are transmitted to humans through the bite of infected female Anopheles mosquitoes. Analytical methodologies and efficient drugs exist for the early detection and treatment of malaria, and yet this disease continues infecting millions of people and claiming several hundred thousand lives each year. One of the reasons behind this failure to control the disease is that the standard method for malaria diagnosis, microscopy, is time-consuming and requires trained personnel. Alternatively, rapid diagnostic tests, which have become common for point-of-care testing thanks to their simplicity of use, tend to be insufficiently sensitive and reliable, and PCR, which is sensitive, is too complex and expensive for massive population screening. In this work, we report a sensitive simplified ELISA for the quantitation of Plasmodium falciparum lactate dehydrogenase (Pf-LDH), which is capable of detecting malaria in 45–60 min. Assay development was founded in the selection of high-performance antibodies, implementation of a poly-horseradish peroxidase (polyHRP) signal amplifier, and optimization of whole-blood sample pre-treatment. The simplified ELISA achieved limits of detection (LOD) and quantification (LOQ) of 0.11 ng mL−1 and 0.37 ng mL−1, respectively, in lysed whole blood, and an LOD comparable to that of PCR in Plasmodium in vitro cultures (0.67 and 1.33 parasites μL−1 for ELISA and PCR, respectively). Accordingly, the developed immunoassay represents a simple and effective diagnostic tool for P. falciparum malaria, with a time-to-result of <60 min and sensitivity similar to the reference PCR, but easier to implement in low-resource settings.

JTD Keywords: malaria quantitative diagnosis, plasmodium culture, plasmodium ldh, polyhrp signal amplifier, simplified elisa, Malaria quantitative diagnosis, Plasmodium culture, Plasmodium ldh, Polyhrp signal amplifier, Simplified elisa


Manca, ML, Ferraro, M, Pace, E, Di Vincenzo, S, Valenti, D, Fernàndez-Busquets, X, Peptu, CA, Manconi, M, (2021). Loading of beclomethasone in liposomes and hyalurosomes improved with mucin as effective approach to counteract the oxidative stress generated by cigarette smoke extract Nanomaterials 11, 850

In this work beclomethasone dipropionate was loaded into liposomes and hyalurosomes modified with mucin to improve the ability of the payload to counteract the oxidative stress and involved damages caused by cigarette smoke in the airway. The vesicles were prepared by dispersing all components in the appropriate vehicle and sonicating them, thus avoiding the use of organic solvents. Unilamellar and bilamellar vesicles small in size (~117 nm), homogeneously dispersed (polydispersity index lower than 0.22) and negatively charged (~−11 mV), were obtained. Moreover, these vesicle dispersions were stable for five months at room temperature (~25 C). In vitro studies performed using the Next Generation Impactor confirmed the suitability of the formulations to be nebulized as they were capable of reaching the last stages of the impactor that mimic the deeper airways, thus improving the deposition of beclomethasone in the target site. Further, biocompatibility studies performed by using 16HBE bronchial epithelial cells confirmed the high biocompatibility and safety of all the vesicles. Among the tested formulations, only mucin-hyalurosomes were capable of effectively counteracting the production of reactive oxygen species (ROS) induced by cigarette smoke extract, suggesting that this formulation may represent a promising tool to reduce the damaging effects of cigarette smoke in the lung tissues, thus reducing the pathogenesis of cigarette smoke-associated diseases such as chronic obstructive pulmonary disease, emphysema, and cancer. ◦

JTD Keywords: 16hbe cells, beclomethasone, cigarette smoke extract, mucin, oxidative stress, phospholipid vesicles, pulmonary delivery, 16hbe cells, Beclomethasone, Cigarette smoke extract, Mucin, Oxidative stress, Phospholipid vesicles, Pulmonary delivery


Avalos-Padilla, Y, Georgiev, VN, Lantero, E, Pujals, S, Verhoef, R, Borgheti-Cardoso, LN, Albertazzi, L, Dimova, R, Fernàndez-Busquets, X, (2021). The ESCRT-III machinery participates in the production of extracellular vesicles and protein export during Plasmodium falciparum infection Plos Pathogens 17, e1009455

Infection with Plasmodium falciparum enhances extracellular vesicle (EV) production in parasitized red blood cells (pRBCs), an important mechanism for parasite-to-parasite communication during the asexual intraerythrocytic life cycle. The endosomal sorting complex required for transport (ESCRT), and in particular the ESCRT-III sub-complex, participates in the formation of EVs in higher eukaryotes. However, RBCs have lost the majority of their organelles through the maturation process, including an important reduction in their vesicular network. Therefore, the mechanism of EV production in P. falciparum-infected RBCs remains to be elucidated. Here we demonstrate that P. falciparum possesses a functional ESCRT-III machinery activated by an alternative recruitment pathway involving the action of PfBro1 and PfVps32/PfVps60 proteins. Additionally, multivesicular body formation and membrane shedding, both reported mechanisms of EV production, were reconstituted in the membrane model of giant unilamellar vesicles using the purified recombinant proteins. Moreover, the presence of PfVps32, PfVps60 and PfBro1 in EVs purified from a pRBC culture was confirmed by super-resolution microscopy and dot blot assays. Finally, disruption of the PfVps60 gene led to a reduction in the number of the produced EVs in the KO strain and affected the distribution of other ESCRT-III components. Overall, our results increase the knowledge on the underlying molecular mechanisms during malaria pathogenesis and demonstrate that ESCRT-III P. falciparum proteins participate in EV production.

JTD


Biosca, A, Cabanach, P, Abdulkarim, M, Gumbleton, M, Gómez-Canela, C, Ramírez, M, Bouzón-Arnáiz, I, Avalos-Padilla, Y, Borros, S, Fernàndez-Busquets, X, (2021). Zwitterionic self-assembled nanoparticles as carriers for Plasmodium targeting in malaria oral treatment Journal Of Controlled Release 331, 364-375

© 2021 Elsevier B.V. The current decline in antimalarial drug efficacy due to the evolution of resistant Plasmodium strains calls for new strategies capable of improving the bioavailability of antimalarials, especially of those whose lipophilic character imparts them a low solubility in biological fluids. Here we have designed, synthesized and characterized amphiphilic zwitterionic block copolymers forming nanoparticles capable of penetrating the intestinal epithelium that can be used for oral administration. Poly(butyl methacrylate-co-morpholinoethyl sulfobetaine methacrylate) (PBMA-MESBMA)-based nanoparticles exhibited a specific targeting to Plasmodium falciparum-infected vs. parasite-free red blood cells (74.8%/0.8% respectively), which was maintained upon encapsulation of the lipophilic antimalarial drug curcumin (82.6%/0.3%). The in vitro efficacy of curcumin upon encapsulation was maintained relative to the free compound, with an IC50 around 5 μM. In vivo assays indicated a significantly increased curcumin concentration in the blood of mice one hour after being orally fed PBMA-MESBMA-curcumin in comparison to the administration of free drug (18.7 vs. 2.1 ng/ml, respectively). At longer times, however, plasma curcumin concentration equaled between free and encapsulated drug, which was reflected in similar in vivo antimalarial activities in Plasmodium yoelii yoelii-infected mice. Microscopic analysis in blood samples of fluorescently labeled PBMA-MESBMA revealed the presence of the polymer inside P. yoelii yoelii-parasitized erythrocytes one hour after oral administration to infected animals.

JTD Keywords: curcumin, drug delivery, malaria, pbma-mesbma, plasmodium, zwitterionic block copolymers, Curcumin, Drug delivery, Malaria, Pbma-mesbma, Plasmodium, Zwitterionic block copolymers


Fonte, M, Tassi, N, Fontinha, D, Bouzón-Arnáiz, I, Ferraz, R, Araújo, MJ, Fernàndez-Busquets, X, Prudêncio, M, Gomes, P, Teixeira, C, (2021). 4,9-Diaminoacridines and 4-Aminoacridines as Dual-Stage Antiplasmodial Hits Chemmedchem 16, 788-792

© 2020 Wiley-VCH GmbH Multi-stage drugs have been prioritized in antimalarial drug discovery, as targeting more than one process in the Plasmodium life cycle is likely to increase efficiency, while decreasing the chances of emergence of resistance by the parasite. Herein, we disclose two novel acridine-based families of compounds that combine the structural features of primaquine and chloroquine. Compounds prepared and studied thus far retained the in vitro activity displayed by the parent drugs against the erythrocytic stages of chloroquine-sensitive and -resistant Plasmodium falciparum strains, and against the hepatic stages of Plasmodium berghei, hence acting as dual-stage antiplasmodial hits.

JTD Keywords: acridines, antimalarial activity, blood-stage, liver-stage, malaria, plasmodium, Acridines, Antimalarial activity, Blood-stage, Liver-stage, Malaria, Plasmodium, Synthesis


Caddeo, C, Gabriele, M, Nácher, A, Fernàndez-Busquets, X, Valenti, D, Fadda, AM, Pucci, L, Manconi, M, (2021). Resveratrol and artemisinin eudragit-coated liposomes: A strategy to tackle intestinal tumors International Journal Of Pharmaceutics 592, 120083

© 2020 Elsevier B.V. Resveratrol and artemisinin, two naturally occurring compounds with a wide range of biological activities, have been reported to exert antitumor effects against several types of cancer. In this work, Eudragit-coated liposomes were developed to safely transport resveratrol and artemisinin through the gastrointestinal tract and target the intestine. The physico-chemical properties of the Eudragit-coated liposomes were assessed by light scattering and cryogenic transmission electron microscopy. Nanosized (around 100 nm), spherical or elongated, unilamellar vesicles were produced. The protective effect of the Eudragit coating was confirmed by assessing the physical stability of the vesicles in fluids mimicking the gastrointestinal environment. Furthermore, the vesicles were found to exert a pro-oxidant activity in intestinal adenocarcinoma cells, which resulted in a marked mortality due to the generation of reactive oxygen species (ROS). A time- and dose-dependent cell growth inhibitory effect was detected, with elevated ROS levels when resveratrol and artemisinin were combined. Therefore, the proposed formulations may represent a valuable means to counteract intestinal tumor growth.

JTD Keywords: antitumor, artemisinin, eudragit, intestinal delivery, liposomes, Antitumor, Artemisinin, Eudragit, Intestinal delivery, Liposomes, Resveratrol


Vilanova, E., Ciodaro, P. J., Bezerra, F. F., Santos, G. R. C., Valle-Delgado, J. J., Anselmetti, D., Fernàndez-Busquets, X., Mourão, P. A. S., (2020). Adhesion of freshwater sponge cells mediated by carbohydrate-carbohydrate interactions requires low environmental calcium Glycobiology 30, (9), 710-721

Marine ancestors of freshwater sponges had to undergo a series of physiological adaptations to colonize harsh and heterogeneous limnic environments. Besides reduced salinity, river-lake systems also have calcium concentrations far lower than seawater. Cell adhesion in sponges is mediated by calcium-dependent multivalent self-interactions of sulfated polysaccharide components of membrane-bound proteoglycans named aggregation factors. Cells of marine sponges require seawater average calcium concentration (10 mM) to sustain adhesion promoted by aggregation factors. We demonstrate here that the freshwater sponge Spongilla alba can thrive in a calcium-poor aquatic environment and that their cells are able to aggregate and form primmorphs with calcium concentrations 40-fold lower than that required by marine sponges cells. We also find that their gemmules need calcium and other micronutrients to hatch and generate new sponges. The sulfated polysaccharide purified from S. alba has sulfate content and molecular size notably lower than those from marine sponges. Nuclear magnetic resonance analyses indicated that it is composed of a central backbone of non- and 2-sulfated α- and β-glucose units decorated with branches of α-glucose. Assessments with atomic force microscopy/single-molecule force spectroscopy show that S. alba glucan requires 10-fold less calcium than sulfated polysaccharides from marine sponges to self-interact efficiently. Such an ability to retain multicellular morphology with low environmental calcium must have been a crucial evolutionary step for freshwater sponges to successfully colonize inland waters.

JTD Keywords: Carbohydrate interactions, Evolutionary adaptation, Porifera, Proteoglycans, Sulfated polysaccharides


Allaw, M., Manca, M. L., Caddeo, C., Recio, M. C., Pérez-Brocal, V., Moya, A., Fernàndez-Busquets, X., Manconi, M., (2020). Advanced strategy to exploit wine-making waste by manufacturing antioxidant and prebiotic fibre-enriched vesicles for intestinal health Colloids and Surfaces B: Biointerfaces 193, 111146

Grape extract-loaded fibre-enriched vesicles, nutriosomes, were prepared by combining antioxidant extracts obtained from grape pomaces and a prebiotic, soluble fibre (Nutriose®FM06). The nutriosomes were small in size (from ∼140 to 260 nm), homogeneous (polydispersity index < 0.2) and highly negative (∼ −79 mV). The vesicles were highly stable during 12 months of storage at 25 °C. When diluted with warmed (37 °C) acidic medium (pH 1.2) of high ionic strength, the vesicles only displayed an increase of the mean diameter and a low release of the extract, which were dependent on Nutriose concentration. The formulations were highly biocompatible and able to protect intestinal cells (Caco-2) from oxidative stress damage. In vivo results underlined that the composition of mouse microbiota was not affected by the vesicular formulations. Overall results support the potential application of grape nutriosomes as an alternative strategy for the protection of the intestinal tract.

JTD Keywords: Antioxidant activity, Grape pomace, Gut microbiota, In vivo studies, Intestinal cells, Nutriosomes, Phospholipid vesicles, Prebiotic activity


Biosca, A., Bouzón-Arnáiz, I., Spanos, L., Siden-Kiamos, I., Iglesias, V., Ventura, S., Fernàndez-Busquets, X., (2020). Detection of protein aggregation in live Plasmodium parasites Antimicrobial Agents and Chemotherapy 64, (6), e02135-19

The rapid evolution of resistance in the malaria parasite to every single drug developed against it calls for the urgent identification of new molecular targets. Using a stain specific for the detection of intracellular amyloid deposits in live cells, we have detected the presence of abundant protein aggregates in Plasmodium falciparum blood stages and female gametes cultured in vitro, in the blood stages of mice infected by Plasmodium yoelii, and in the mosquito stages of the murine malaria species Plasmodium berghei. Aggregated proteins could not be detected in early rings, the parasite form that starts the intraerythrocytic cycle. A proteomics approach was used to pinpoint actual aggregating polypeptides in functional P. falciparum blood stages, which resulted in the identification of 369 proteins, with roles particularly enriched in nuclear import-related processes. Five aggregation-prone short peptides selected from this protein pool exhibited different aggregation propensity according to Thioflavin-T fluorescence measurements, and were observed to form amorphous aggregates and amyloid fibrils in transmission electron microscope images. The results presented suggest that generalized protein aggregation might have a functional role in malaria parasites. Future antimalarial strategies based on the upsetting of the pathogen’s proteostasis and therefore affecting multiple gene products could represent the entry to new therapeutic approaches

JTD Keywords: Malaria, Protein aggregation


Lantero, E., Belavilas-Trovas, A., Biosca, A., Recolons, P., Moles, E., Sulleiro, E., Zarzuela, F., Ávalos-Padilla, Y., Ramírez, M., Fernàndez-Busquets, X., (2020). Development of DNA aptamers against Plasmodium falciparum blood stages using cell-systematic evolution of ligands by exponential enrichment Journal of biomedical nanotechnology Journal of Biomedical Nanotechnology , 16, (3), 315-334

New biomarkers have to be developed in order to increase the performance of current antigen-based malaria rapid diagnosis. Antibody production often involves the use of laboratory animals and is time-consuming and costly, especially when the target is Plasmodium, whose variable antigen expression complicates the development of long-lived biomarkers. To circumvent these obstacles, we have applied the Systematic Evolution of Ligands by EXponential enrichment method to the rapid identification of DNA aptamers against Plasmodium falciparum-infected red blood cells (pRBCs). Five 70 b-long ssDNA sequences, and their shorter forms without the flanking PCR primer-binding regions, have been identified having a highly specific binding of pRBCs versus non-infected erythrocytes. Structural analysis revealed G-enriched sequences compatible with the formation of G-quadruplexes. The selected aptamers recognized intracellular epitopes with apparent Kds in the μM range in both fixed and non-fixed saponin-permeabilized pRBCs, improving >30-fold the pRBC detection in comparison with aptamers raised against Plasmodium lactate dehydrogenase, the gold standard antigen for current malaria diagnostic tests. In thin blood smears of clinical samples the aptamers reported in this work specifically bound all P. falciparum stages versus non-infected erythrocytes, and also detected early and late stages of the human malaria parasites Plasmodium vivax, Plasmodium ovale and Plasmodium malariae. The results are discussed in the context of their potential application in future malaria diagnostic devices.

JTD


Ruiz-Vega, G., Arias-Alpízar, K., de la Serna, E., Borgheti-Cardoso, L. N., Sulleiro, E., Molina, I., Fernàndez-Busquets, X., Sánchez-Montalvá, A., del Campo, F. J., Baldrich, E., (2020). Electrochemical POC device for fast malaria quantitative diagnosis in whole blood by using magnetic beads, Poly-HRP and microfluidic paper electrodes Biosensors and Bioelectronics 150, 111925

Malaria, a parasitic infection caused by Plasmodium parasites and transmitted through the bite of infected female Anopheles mosquitos, is one of the main causes of mortality in many developing countries. Over 200 million new infections and nearly half a million deaths are reported each year, and more than three billion people are at risk of acquiring malaria worldwide. Nevertheless, most malaria cases could be cured if detected early. Malaria eradication is a top priority of the World Health Organisation. However, achieving this goal will require mass population screening and treatment, which will be hard to accomplish with current diagnostic tools. We report an electrochemical point-of-care device for the fast, simple and quantitative detection of Plasmodium falciparum lactate dehydrogenase (PfLDH) in whole blood samples. Sample analysis includes 5-min lysis to release intracellular parasites, and stirring for 5 more min with immuno-modified magnetic beads (MB) along with an immuno-modified signal amplifier. The rest of the magneto-immunoassay, including sample filtration, MB washing and electrochemical detection, is performed at a disposable paper electrode microfluidic device. The sensor provides PfLDH quantitation down to 2.47 ng mL−1 in spiked samples and for 0.006–1.5% parasitemias in Plasmodium-infected cultured red blood cells, and discrimination between healthy individuals and malaria patients presenting parasitemias >0.3%. Quantitative malaria diagnosis is attained with little user intervention, which is not achieved by other diagnostic methods.

JTD Keywords: Electrochemical magneto-immunosensor, Malaria quantitative diagnosis, Paper microfluidic electrode, Plasmodium LDH, Point-of-care (POC) testing


Borgheti-Cardoso, L. N., Kooijmans, S. A. A., Gutiérrez Chamorro, L., Biosca, A., Lantero, E., Ramírez, M., Avalos-Padilla, Y., Crespo, I., Fernández, I., Fernandez-Becerra, C., del Portillo, H. A., Fernàndez-Busquets, X., (2020). Extracellular vesicles derived from Plasmodium-infected and non-infected red blood cells as targeted drug delivery vehicles International Journal of Pharmaceutics 587, 119627

Among several factors behind drug resistance evolution in malaria is the challenge of administering overall doses that are not toxic for the patient but that, locally, are sufficiently high to rapidly kill the parasites. Thus, a crucial antimalarial strategy is the development of drug delivery systems capable of targeting antimalarial compounds to Plasmodium with high specificity. In the present study, extracellular vesicles (EVs) have been evaluated as a drug delivery system for the treatment of malaria. EVs derived from naive red blood cells (RBCs) and from Plasmodium falciparum-infected RBCs (pRBCs) were isolated by ultrafiltration followed by size exclusion chromatography. Lipidomic characterization showed that there were no significant qualitative differences between the lipidomic profiles of pRBC-derived EVs (pRBC-EVs) and RBC-derived EVs (RBC-EVs). Both EVs were taken up by RBCs and pRBCs, although pRBC-EVs were more efficiently internalized than RBC-EVs, which suggested their potential use as drug delivery vehicles for these cells. When loaded into pRBC-EVs, the antimalarial drugs atovaquone and tafenoquine inhibited in vitro P. falciparum growth more efficiently than their free drug counterparts, indicating that pRBC-EVs can potentially increase the efficacy of several small hydrophobic drugs used for the treatment of malaria.

JTD Keywords: Antimalarial drugs, Drug delivery, Extracellular vesicles, Malaria, Plasmodium falciparum


Lantero, E., Fernandes, J., Aláez-Versón, C. R., Gomes, J., Silveira, H., Nogueira, F., Fernàndez-Busquets, X., (2020). Heparin administered to anopheles in membrane feeding assays blocks plasmodium development in the mosquito Biomolecules 10, (8), 1136

Innovative antimalarial strategies are urgently needed given the alarming evolution of resistance to every single drug developed against Plasmodium parasites. The sulfated glycosaminoglycan heparin has been delivered in membrane feeding assays together with Plasmodium berghei-infected blood to Anopheles stephensi mosquitoes. The transition between ookinete and oocyst pathogen stages in the mosquito has been studied in vivo through oocyst counting in dissected insect midguts, whereas ookinete interactions with heparin have been followed ex vivo by flow cytometry. Heparin interferes with the parasite’s ookinete–oocyst transition by binding ookinetes, but it does not affect fertilization. Hypersulfated heparin is a more efficient blocker of ookinete development than native heparin, significantly reducing the number of oocysts per midgut when offered to mosquitoes at 5 µg/mL in membrane feeding assays. Direct delivery of heparin to mosquitoes might represent a new antimalarial strategy of rapid implementation, since it would not require clinical trials for its immediate deployment.

JTD Keywords: Anopheles, Antimalarial drugs, Heparin, Malaria, Mosquito, Ookinete, Plasmodium, Transmission blocking


Borgheti-Cardoso, L. N., San Anselmo, M., Lantero, E., Lancelot, A., Serrano, J. L., Hernández-Ainsa, S., Fernàndez-Busquets, X., Sierra, T., (2020). Promising nanomaterials in the fight against malaria Journal of Materials Chemistry B 8, (41), 9428-9448

For more than one hundred years, several treatments against malaria have been proposed but they have systematically failed, mainly due to the occurrence of drug resistance in part resulting from the exposure of the parasite to low drug doses. Several factors are behind this problem, including (i) the formidable barrier imposed by the Plasmodium life cycle with intracellular localization of parasites in hepatocytes and red blood cells, (ii) the adverse fluidic conditions encountered in the blood circulation that affect the interaction of molecular components with target cells, and (iii) the unfavorable physicochemical characteristics of most antimalarial drugs, which have an amphiphilic character and can be widely distributed into body tissues after administration and rapidly metabolized in the liver. To surpass these drawbacks, rather than focusing all efforts on discovering new drugs whose efficacy is quickly decreased by the parasite's evolution of resistance, the development of effective drug delivery carriers is a promising strategy. Nanomaterials have been investigated for their capacity to effectively deliver antimalarial drugs at local doses sufficiently high to kill the parasites and avoid drug resistance evolution, while maintaining a low overall dose to prevent undesirable toxic side effects. In recent years, several nanostructured systems such as liposomes, polymeric nanoparticles or dendrimers have been shown to be capable of improving the efficacy of antimalarial therapies. In this respect, nanomaterials are a promising drug delivery vehicle and can be used in therapeutic strategies designed to fight the parasite both in humans and in the mosquito vector of the disease. The chemical analyses of these nanomaterials are essential for the proposal and development of effective anti-malaria therapies. This review is intended to analyze the application of nanomaterials to improve the drug efficacy on different stages of the malaria parasites in both the human and mosquito hosts.

JTD


Martí Coma-Cros, E., Lancelot, A., San Anselmo, M., Borgheti-Cardoso, L. N., Valle-Delgado, J. J., Serrano, J. L., Fernàndez-Busquets, X., Sierra, T., (2019). Micelle carriers based on dendritic macromolecules containing bis-MPA and glycine for antimalarial drug delivery Biomaterials Science 7, (4), 1661-1674

Biomaterials for antimalarial drug transport still need to be investigated in order to attain nanocarriers that can tackle essential issues related to malaria treatment, e.g. complying with size requirements and targeting specificity for their entry into Plasmodium-infected red blood cells (pRBCs), and limiting premature drug elimination or drug resistance evolution. Two types of dendritic macromolecule that can form vehicles suitable for antimalarial drug transport are herein explored. A new hybrid dendritic-linear-dendritic block copolymer based on Pluronic® F127 and amino terminated 2,2′-bis(glycyloxymethyl)propionic acid dendrons with a poly(ester amide) skeleton (HDLDBC-bGMPA) and an amino terminated dendronized hyperbranched polymer with a polyester skeleton derived from 2,2′-bis(hydroxymethyl)propionic acid (DHP-bMPA) have provided self-assembled and unimolecular micelles. Both types of micelle carrier are biocompatible and exhibit appropriate sizes to enter into pRBCs. Targeting studies have revealed different behaviors for each nanocarrier that may open new perspectives for antimalarial therapeutic approaches. Whereas DHP-bMPA exhibits a clear targeting specificity for pRBCs, HDLDBC-bGMPA is incorporated by all erythrocytes. It has also been observed that DHP-bMPA and HDLDBC-bGMPA incorporate into human umbilical vein endothelial cells with different subcellular localization, i.e. cytosolic and nuclear, respectively. Drug loading capacity and encapsulation efficiencies for the antimalarial compounds chloroquine, primaquine and quinacrine ranging from 30% to 60% have been determined for both carriers. The resulting drug-loaded nanocarriers have been tested for their capacity to inhibit Plasmodium growth in in vitro and in vivo assays.

JTD


Picón-Pagès, P., Bonet, J., García-García, J., Garcia-Buendia, J., Gutierrez, D., Valle, J., Gómez-Casuso, C. E. S., Sidelkivska, V., Alvarez, A., Perálvarez-Marín, A., Suades, A., Fernàndez-Busquets, X., Andreu, D., Vicente, R., Oliva, B., Muñoz, F. J., (2019). Human albumin impairs amyloid β-peptide fibrillation through its C-terminus: From docking modeling to protection against neurotoxicity in Alzheimer's disease Computational and Structural Biotechnology Journal 17, 963-971

Alzheimer's disease (AD) is a neurodegenerative process characterized by the accumulation of extracellular deposits of amyloid β-peptide (Aβ), which induces neuronal death. Monomeric Aβ is not toxic but tends to aggregate into β-sheets that are neurotoxic. Therefore to prevent or delay AD onset and progression one of the main therapeutic approaches would be to impair Aβ assembly into oligomers and fibrils and to promote disaggregation of the preformed aggregate. Albumin is the most abundant protein in the cerebrospinal fluid and it was reported to bind Aβ impeding its aggregation. In a previous work we identified a 35-residue sequence of clusterin, a well-known protein that binds Aβ, that is highly similar to the C-terminus (CTerm) of albumin. In this work, the docking experiments show that the average binding free energy of the CTerm-Aβ1–42 simulations was significantly lower than that of the clusterin-Aβ1–42 binding, highlighting the possibility that the CTerm retains albumin's binding properties. To validate this observation, we performed in vitro structural analysis of soluble and aggregated 1 μM Aβ1–42 incubated with 5 μM CTerm, equimolar to the albumin concentration in the CSF. Reversed-phase chromatography and electron microscopy analysis demonstrated a reduction of Aβ1–42 aggregates when the CTerm was present. Furthermore, we treated a human neuroblastoma cell line with soluble and aggregated Aβ1–42 incubated with CTerm obtaining a significant protection against Aβ-induced neurotoxicity. These in silico and in vitro data suggest that the albumin CTerm is able to impair Aβ aggregation and to promote disassemble of Aβ aggregates protecting neurons.

JTD Keywords: Albumin, Alzheimer's disease, Amyloid, Docking, β-Sheet


Caddeo, C., Gabriele, M., Fernàndez-Busquets, X., Valenti, D., Fadda, A. M., Pucci, L., Manconi, M., (2019). Antioxidant activity of quercetin in Eudragit-coated liposomes for intestinal delivery International Journal of Pharmaceutics 565, 64-69

Quercetin, a natural polyphenol with strong antioxidant activity, was loaded in Eudragit-coated liposomes conceived for intestinal delivery. Eudragit was used to form a protective shell on the surface of liposomes to resist gastric environment and allow the delivery of quercetin to the intestine. The physico-chemical properties of the liposomes were assessed by light scattering and cryogenic transmission electron microscopy. Small, spherical, uni- and bilamellar liposomes were produced, with the presence of multilamellar structures in Eudragit-coated liposomes. The Eudragit coating increased the physical stability of the vesicular system in fluids mimicking the gastrointestinal environment. Further, the incorporation of quercetin in the vesicular system did not affect its intrinsic antioxidant activity, as DPPH radical was almost completely inhibited, and the vesicles were also capable of ensuring optimal protection against oxidative stress in human intestinal cells by reducing reactive oxygen species (ROS)production. The proposed approach based on quercetin vesicular formulations may be of value in the treatment of pathological conditions associated with intestinal oxidative stress.

JTD Keywords: Antioxidant, Eudragit, HT-29 cells, Intestinal delivery, Liposomes, Quercetin


Manconi, M., Manca, M. L., Escribano-Ferrer, E., Coma-Cros, E. M., Biosca, A., Lantero, E., Fernàndez-Busquets, X., Fadda, A. M., Caddeo, C., (2019). Nanoformulation of curcumin-loaded eudragit-nutriosomes to counteract malaria infection by a dual strategy: Improving antioxidant intestinal activity and systemic efficacy International Journal of Pharmaceutics 556, 82-88

In this paper, nutriosomes (phospholipid vesicles associated with Nutriose® FM06) were modified to obtain new systems aimed at enhancing the efficacy of curcumin in counteracting malaria infection upon oral administration. Eudragit® L100, a pH-sensitive co-polymer, was added to these vesicles, thus obtaining eudragit-nutriosomes, to improve their in vivo performances. Liposomes without eudragit and nutriose were also prepared as a reference. Cryo-TEM images showed the formation of multicompartment vesicles, with mean diameter around 300 nm and highly negative zeta potential. Vesicles were stable in fluids mimicking the gastro-intestinal content due to the high phospholipid concentration and the presence of gastro-resistant eudragit and digestion-resistant nutriose. Eudragit-nutriosomes disclosed promising performances in vitro and in vivo: they maximized the ability of curcumin to counteract oxidative stress in intestinal cells (Caco-2), which presumably reinforced its systemic efficacy. Orally-administered curcumin-loaded eudragit-nutriosomes increased significantly the survival of malaria-infected mice relative to free curcumin-treated controls.

JTD Keywords: Eudragit® L100, Nutriose® FM06, Nutriosomes, Curcumin, Oral administration, Malaria


Manca, M. L., Lattuada, D., Valenti, D., Marelli, O., Corradini, C., Fernàndez-Busquets, X., Zaru, M., Maccioni, A. M., Fadda, A. M., Manconi, M., (2019). Potential therapeutic effect of curcumin loaded hyalurosomes against inflammatory and oxidative processes involved in the pathogenesis of rheumatoid arthritis: The use of fibroblast-like synovial cells cultured in synovial fluid European Journal of Pharmaceutics and Biopharmaceutics 136, 84-92

In the present work curcumin loaded hyalurosomes were proposed as innovative systems for the treatment of rheumatoid arthritis. Vesicles were prepared using a one-step and environmentally friendly method. Aiming at finding the most suitable formulation in terms of size, surface charge and stability on storage, an extensive pre-formulation study was performed using different type and amount of phospholipids. Curcumin loaded vesicles prepared with 180 mg/ml of Phospholipon 90G (P90G) and immobilized with sodium hyaluronate (2 mg/ml) were selected because of their small size (189 nm), homogeneous dispersion (PI 0.24), negative charge (−35 mV), suitable ability to incorporate high amount of curcumin (E% 88%) and great stability on storage. The in vitro study using fibroblast-like synovial cells cultured in synovial fluid, demonstrated the ability of these vesicles to downregulate the production of anti-apoptotic proteins IAP1 and IAP2 and stimulate the production of IL-10, while the production of IL-6 and IL-15 and reactive oxygen species was reduced, confirming their suitability in counteracting pathogenesis of rheumatoid arthritis.

JTD Keywords: Curcumin, IL-6 and IL-15, In vitro inflammation, Oxidative stress, Phospholipid vesicles, Synoviocytes


Biosca, A., Dirscherl, L., Moles, E., Imperial, S., Fernàndez-Busquets, X., (2019). An immunoPEGliposome for targeted antimalarial combination therapy at the nanoscale Pharmaceutics 11, (7), 341

Combination therapies, where two drugs acting through different mechanisms are administered simultaneously, are one of the most efficient approaches currently used to treat malaria infections. However, the different pharmacokinetic profiles often exhibited by the combined drugs tend to decrease treatment efficacy as the compounds are usually eliminated from the circulation at different rates. To circumvent this obstacle, we have engineered an immunoliposomal nanovector encapsulating hydrophilic and lipophilic compounds in its lumen and lipid bilayer, respectively. The antimalarial domiphen bromide has been encapsulated in the liposome membrane with good efficiency, although its high IC50 of ca. 1 μM for living parasites complicates its use as immunoliposomal therapy due to erythrocyte agglutination. The conjugation of antibodies against glycophorin A targeted the nanocarriers to Plasmodium-infected red blood cells and to gametocytes, the sole malaria parasite stage responsible for the transmission from the human to the mosquito vector. The antimalarials pyronaridine and atovaquone, which block the development of gametocytes, have been co-encapsulated in glycophorin A-targeted immunoliposomes. The co-immunoliposomized drugs have activities significantly higher than their free forms when tested in in vitro Plasmodium falciparum cultures: Pyronaridine and atovaquone concentrations that, when encapsulated in immunoliposomes, resulted in a 50% inhibition of parasite growth had no effect on the viability of the pathogen when used as free drugs.

JTD Keywords: Combination therapy, Immunoliposomes, Malaria, Nanomedicine, Nanotechnology, Plasmodium, Targeted drug delivery


Moles, E., Kavallaris, M., Fernàndez-Busquets, X., (2019). Modeling the distribution of diprotic basic drugs in liposomal systems: Perspectives on malaria nanotherapy Frontiers in Pharmacology 10, 1064

Understanding how polyprotic compounds distribute within liposome (LP) suspensions is of major importance to design effective drug delivery strategies. Advances in this research field led to the definition of LP-based active drug encapsulation methods driven by transmembrane pH gradients with evidenced efficacy in the management of cancer and infectious diseases. An accurate modeling of membrane-solution drug partitioning is also fundamental when designing drug delivery systems for poorly endocytic cells, such as red blood cells (RBCs), in which the delivered payloads rely mostly on the passive diffusion of drug molecules across the cell membrane. Several experimental models have been proposed so far to predict the partitioning of polyprotic basic/acid drugs in artificial membranes. Nevertheless, the definition of a model in which the membrane-solution partitioning of each individual drug microspecies is studied relative to each other is still a topic of ongoing research. We present here a novel experimental approach based on mathematical modeling of drug encapsulation efficiency (EE) data in liposomal systems by which microspecies-specific partition coefficients are reported as a function of pH and phospholipid compositions replicating the RBC membrane in a simple and highly translatable manner. This approach has been applied to the study of several diprotic basic antimalarials of major clinical importance (quinine, primaquine, tafenoquine, quinacrine, and chloroquine) describing their respective microspecies distribution in phosphatidylcholine-LP suspensions. Estimated EE data according to the model described here closely fitted experimental values with no significant differences obtained in 75% of all pH/lipid composition-dependent conditions assayed. Additional applications studied include modeling drug EE in LPs in response to transmembrane pH gradients and lipid bilayer asymmetric charge, conditions of potential interest reflected in our previously reported RBC-targeted antimalarial nanotherapeutics.

JTD Keywords: Distribution coefficient, Liposomal systems, Malaria therapy, Nanomedicine, Partition coefficient, PH-controlled drug encapsulation, Polyprotic drug, Targeted drug delivery


Aguiar, L., Biosca, A., Lantero, E., Gut, J., Vale, N., Rosenthal, P. J., Nogueira, F., Andreu, D., Fernàndez-Busquets, X., Gomes, P., (2019). Coupling the antimalarial cell penetrating peptide TP10 to classical antimalarial drugs primaquine and chloroquine produces strongly hemolytic conjugates Molecules 24, (24), 4559

Recently, we disclosed primaquine cell penetrating peptide conjugates that were more potent than parent primaquine against liver stage Plasmodium parasites and non-toxic to hepatocytes. The same strategy was now applied to the blood-stage antimalarial chloroquine, using a wide set of peptides, including TP10, a cell penetrating peptide with intrinsic antiplasmodial activity. Chloroquine-TP10 conjugates displaying higher antiplasmodial activity than the parent TP10 peptide were identified, at the cost of an increased hemolytic activity, which was further confirmed for their primaquine analogues. Fluorescence microscopy and flow cytometry suggest that these drug-peptide conjugates strongly bind, and likely destroy, erythrocyte membranes. Taken together, the results herein reported put forward that coupling antimalarial aminoquinolines to cell penetrating peptides delivers hemolytic conjugates. Hence, despite their widely reported advantages as carriers for many different types of cargo, from small drugs to biomacromolecules, cell penetrating peptides seem unsuitable for safe intracellular delivery of antimalarial aminoquinolines due to hemolysis issues. This highlights the relevance of paying attention to hemolytic effects of cell penetrating peptide-drug conjugates.

JTD Keywords: Antimalarial, Cell penetrating peptide, Chloroquine, Erythrocyte fluorescence, Flow cytometry, Hemolysis, Microscopy, Plasmodium, Primaquine, Red blood cell


Quiliano, Miguel, Pabón, Adriana, Moles, Ernest, Bonilla-Ramirez, Leonardo, Fabing, Isabelle, Fong, Kim Y., Nieto-Aco, Diego A., Wright, David W., Pizarro, Juan C., Vettorazzi, Ariane, López de Cerain, Adela, Deharo, Eric, Fernàndez-Busquets, Xavier, Garavito, Giovanny, Aldana, Ignacio, Galiano, Silvia, (2018). Structure-activity relationship of new antimalarial 1-aryl-3-susbtituted propanol derivatives: Synthesis, preliminary toxicity profiling, parasite life cycle stage studies, target exploration, and targeted delivery European Journal of Medicinal Chemistry 152, 489-514

Design, synthesis, structure-activity relationship, cytotoxicity studies, in silico drug-likeness, genotoxicity screening, and in vivo studies of new 1-aryl-3-substituted propanol derivatives led to the identification of nine compounds with promising in vitro (55, 56, 61, 64, 66, and 70–73) and in vivo (66 and 72) antimalarial profiles against Plasmodium falciparum and Plasmodium berghei. Compounds 55, 56, 61, 64, 66 and 70–73 exhibited potent antiplasmodial activity against chloroquine-resistant strain FCR-3 (IC50s < 0.28 μM), and compounds 55, 56, 64, 70, 71, and 72 showed potent biological activity in chloroquine-sensitive and multidrug-resistant strains (IC50s < 0.7 μM for 3D7, D6, FCR-3 and C235). All of these compounds share appropriate drug-likeness profiles and adequate selectivity indexes (77 < SI < 184) as well as lack genotoxicity. In vivo efficacy tests in a mouse model showed compounds 66 and 72 to be promising candidates as they exhibited significant parasitemia reductions of 96.4% and 80.4%, respectively. Additional studies such as liver stage and sporogony inhibition, target exploration of heat shock protein 90 of P. falciparum, targeted delivery by immunoliposomes, and enantiomer characterization were performed and strongly reinforce the hypothesis of 1-aryl-3-substituted propanol derivatives as promising antimalarial compounds.

JTD Keywords: Antiplasmodial, Antimalarial, Arylamino alcohol, Multi-stage activity, Hsp90, Enantiomer separation


Martí Coma-Cros, E., Biosca, A., Marques, J., Carol, L., Urbán, P., Berenguer, D., Riera, M. C., Delves, M., Sinden, R. E., Valle-Delgado, J. J., Spanos, L., Siden-Kiamos, I., Pérez, P., Paaijmans, K., Rottmann, M., Manfredi, A., Ferruti, P., Ranucci, E., Fernàndez-Busquets, X., (2018). Polyamidoamine nanoparticles for the oral administration of antimalarial drugs Pharmaceutics 10, (4), 225

Current strategies for the mass administration of antimalarial drugs demand oral formulations to target the asexual Plasmodium stages in the peripheral bloodstream, whereas recommendations for future interventions stress the importance of also targeting the transmission stages of the parasite as it passes between humans and mosquitoes. Orally administered polyamidoamine (PAA) nanoparticles conjugated to chloroquine reached the blood circulation and cured Plasmodium yoelii-infected mice, slightly improving the activity of the free drug and inducing in the animals immunity against malaria. Liquid chromatography with tandem mass spectrometry analysis of affinity chromatography-purified PAA ligands suggested a high adhesiveness of PAAs to Plasmodium falciparum proteins, which might be the mechanism responsible for the preferential binding of PAAs to Plasmodium-infected erythrocytes vs. non-infected red blood cells. The weak antimalarial activity of some PAAs was found to operate through inhibition of parasite invasion, whereas the observed polymer intake by macrophages indicated a potential of PAAs for the treatment of certain coinfections such as Plasmodium and Leishmania. When fluorescein-labeled PAAs were fed to females of the malaria mosquito vectors Anopheles atroparvus and Anopheles gambiae, persistent fluorescence was observed in the midgut and in other insect’s tissues. These results present PAAs as a versatile platform for the encapsulation of orally administered antimalarial drugs and for direct administration of antimalarials to mosquitoes, targeting mosquito stages of Plasmodium.

JTD Keywords: Anopheles, Antimalarial drugs, Malaria, Mosquitoes, Nanomedicine, Nanotechnology, Plasmodium, Polyamidoamines, Polymers, Targeted drug delivery


Pallarès, Irantzu, de Groot, Natalia S., Iglesias, Valentín, Sant'Anna, Ricardo, Biosca, Arnau, Fernàndez-Busquets, Xavier, Ventura, Salvador, (2018). Discovering putative prion-like proteins in Plasmodium falciparum: A computational and experimental analysis Frontiers in Microbiology 9, Article 1737

Prions are a singular subset of proteins able to switch between a soluble conformation and a self-perpetuating amyloid state. Traditionally associated with neurodegenerative diseases, increasing evidence indicates that organisms exploit prion-like mechanisms for beneficial purposes. The ability to transit between conformations is encoded in the so-called prion domains, long disordered regions usually enriched in glutamine/asparagines residues. Interestingly, Plasmodium falciparum, the parasite that causes the most virulent form of malaria, is exceptionally rich in proteins bearing long Q/N-rich sequence stretches, accounting for roughly 30% of the proteome. This biased composition suggests that these protein regions might correspond to prion-like domains (PrLDs) and potentially form amyloid assemblies. To investigate this possibility, we performed a stringent computational survey for Q/N-rich PrLDs on P. falciparum. Our data indicate that ~10% of P. falciparum protein sequences have prionic signatures, and that this subproteome is enriched in regulatory proteins, such as transcription factors and RNA-binding proteins. Furthermore, we experimentally demonstrate for several of the identified PrLDs that, despite their disordered nature, they contain inner short sequences able to spontaneously self-assemble into amyloid-like structures. Although the ability of these sequences to nucleate the conformational conversion of the respective full-length proteins should still be demonstrated, our analysis suggests that, as previously described for other organisms, prion-like proteins might also play a functional role in P. falciparum.

JTD Keywords: Plasmodium, Protein aggregation, Amyloid, Prion, Q-N-rich sequences, Protein Disorder


Caddeo, Carla, Pucci, Laura, Gabriele, Morena, Carbone, Claudia, Fernàndez-Busquets, Xavier, Valenti, Donatella, Pons, Ramon, Vassallo, Antonio, Fadda, Anna Maria, Manconi, Maria, (2018). Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol International Journal of Pharmaceutics 538, (1), 40-47

The present investigation reports the development of PEG-modified liposomes for the delivery of naturally occurring resveratrol. PEG-modified liposomes were prepared by direct sonication of the phospholipid aqueous dispersion, in the presence of two PEG-surfactants. Small, spherical, unilamellar vesicles were produced, as demonstrated by light scattering, cryo-TEM, and SAXS. The aging of the vesicles was assessed by using the Turbiscan® technology, and their physical stability was evaluated in vitro in simulated body fluids, results showing that the key features of the liposomes were preserved. The biocompatibility of the formulations was demonstrated in an ex vivo model of hemolysis in human erythrocytes. Further, the incorporation of resveratrol in PEG-modified liposomes did not affect its intrinsic antioxidant activity, as DPPH radical was almost completely inhibited, and the vesicles were also able to ensure an optimal protection against oxidative stress in an ex vivo human erythrocytes-based model. Therefore, the proposed PEG-modified liposomes, which were prepared by a simple and reliable method, represent an interesting approach to safely deliver resveratrol, ensuring the preservation of the carrier structural integrity in the biological fluids, and the antioxidant efficacy of the polyphenol to be exploited against oxidative stress associated with cancer.

JTD Keywords: Resveratrol, Antioxidant, PEG-surfactants, PEG-modified liposomes, Human erythrocytes


Caddeo, Carla, Manca, Maria Letizia, Peris, José Esteban, Usach, Iris, Diez-Sales, Octavio, Matos, Maria, Fernàndez-Busquets, Xavier, Fadda, Anna Maria, Manconi, Maria, (2018). Tocopherol-loaded transfersomes: In vitro antioxidant activity and efficacy in skin regeneration International Journal of Pharmaceutics 551, (1), 34-41

Transfersomes were prepared by using different polysorbates (i.e., Tween 20, 40, 60 and 80) and loaded with tocopherol acetate, a naturally-occurring phenolic compound with antioxidant activity. The vesicles showed unilamellar morphology, small size (∼85 nm), low polydispersity index (≤0.27), and high entrapment efficiency, which increased as a function of the length of the Tween fatty acid chain (from 72% to 90%). The long-term stability of the formulations was evaluated by means of the Turbiscan™ technology, which indicated their good stability, irrespective of the Tween used. The vesicles efficiently delivered tocopherol to the skin, and showed biocompatibility in vitro in keratinocytes and fibroblasts. Regardless of the Tween used, the transfersomes were able to protect skin cells from the oxidative damage induced by hydrogen peroxide. Additionally, transfersomes promoted cell proliferation and migration, which resulted in an acceleration of skin wound closure. These results demonstrated that tocopherol-loaded transfersomes bear potential as topical delivery system with antioxidant activity and wound healing properties.

JTD Keywords: Tocopherol, Transfersomes, Tween, Skin delivery, Antioxidant activity, Skin wound


Martí Coma-Cros, Elisabet, Biosca, Arnau, Lantero, Elena, Manca, Maria, Caddeo, Carla, Gutiérrez, Lucía, Ramírez, Miriam, Borgheti-Cardoso, Livia, Manconi, Maria, Fernàndez-Busquets, Xavier, (2018). Antimalarial activity of orally administered curcumin incorporated in Eudragit®-containing liposomes International Journal of Molecular Sciences 19, (5), 1361

Curcumin is an antimalarial compound easy to obtain and inexpensive, having shown little toxicity across a diverse population. However, the clinical use of this interesting polyphenol has been hampered by its poor oral absorption, extremely low aqueous solubility and rapid metabolism. In this study, we have used the anionic copolymer Eudragit® S100 to assemble liposomes incorporating curcumin and containing either hyaluronan (Eudragit-hyaluronan liposomes) or the water-soluble dextrin Nutriose® FM06 (Eudragit-nutriosomes). Upon oral administration of the rehydrated freeze-dried nanosystems administered at 25/75 mg curcumin·kg−1·day−1, only Eudragit-nutriosomes improved the in vivo antimalarial activity of curcumin in a dose-dependent manner, by enhancing the survival of all Plasmodium yoelii-infected mice up to 11/11 days, as compared to 6/7 days upon administration of an equal dose of the free compound. On the other hand, animals treated with curcumin incorporated in Eudragit-hyaluronan liposomes did not live longer than the controls, a result consistent with the lower stability of this formulation after reconstitution. Polymer-lipid nanovesicles hold promise for their development into systems for the oral delivery of curcumin-based antimalarial therapies.

JTD Keywords: Malaria, Curcumin, Nanomedicine, Oral administration, Lipid nanovesicles, Eudragit, Nutriose, Hyaluronan, Plasmodium yoelii


Borgheti-Cardoso, L.N., Fernàndez-Busquets, X., (2018). Turning Plasmodium survival strategies against itself Future Medicinal Chemistry 10, (19), 2245-2248

Valls-Comamala, V., Guivernau, B., Bonet, J., Puig, M., Perálvarez-Marín, A., Palomer, E., Fernàndez-Busquets, X., Altafaj, X., Tajes, M., Puig-Pijoan, A., Vicente, R., Oliva, B., Muñoz, F. J., (2017). The antigen-binding fragment of human gamma immunoglobulin prevents amyloid β-peptide folding into β-sheet to form oligomers Oncotarget 8, (25), 41154-41165

The amyloid beta-peptide (Aβ) plays a leading role in Alzheimer’s disease (AD) physiopathology. Even though monomeric forms of Aβ are harmless to cells, Aβ can aggregate into β-sheet oligomers and fibrils, which are both neurotoxic. Therefore, one of the main therapeutic approaches to cure or delay AD onset and progression is targeting Aβ aggregation. In the present study, we show that a pool of human gamma immunoglobulins (IgG) protected cortical neurons from the challenge with Aβ oligomers, as assayed by MTT reduction, caspase-3 activation and cytoskeleton integrity. In addition, we report the inhibitory effect of IgG on Aβ aggregation, as shown by Thioflavin T assay, size exclusion chromatography and atomic force microscopy. Similar results were obtained with Palivizumab, a human anti-sincitial virus antibody. In order to dissect the important domains, we cleaved the pool of human IgG with papain to obtain Fab and Fc fragments. Using these cleaved fragments, we functionally identified Fab as the immunoglobulin fragment inhibiting Aβ aggregation, a result that was further confirmed by an in silico structural model. Interestingly, bioinformatic tools show a highly conserved structure able to bind amyloid in the Fab region. Overall, our data strongly support the inhibitory effect of human IgG on Aβ aggregation and its neuroprotective role.

JTD Keywords: Alzheimer’s disease, Amyloid, Immunoglobulin, Fab, Oligomers


Grice, L. F., Gauthier, M. E. A., Roper, K. E., Fernàndez-Busquets, X., Degnan, S. M., Degnan, B. M., (2017). Origin and evolution of the sponge aggregation factor gene family Molecular Biology and Evolution , 34, (5), 1083-1099

Although discriminating self from nonself is a cardinal animal trait, metazoan allorecognition genes do not appear to be homologous. Here, we characterize the Aggregation Factor (AF) gene family, which encodes putative allorecognition factors in the demosponge Amphimedon queenslandica, and trace its evolution across 24 sponge (Porifera) species. The AF locus in Amphimedon is comprised of a cluster of five similar genes that encode Calx-beta and Von Willebrand domains and a newly defined Wreath domain, and are highly polymorphic. Further AF variance appears to be generated through individualistic patterns of RNA editing. The AF gene family varies between poriferans, with protein sequences and domains diagnostic of the AF family being present in Amphimedon and other demosponges, but absent from other sponge classes. Within the demosponges, AFs vary widely with no two species having the same AF repertoire or domain organization. The evolution of AFs suggests that their diversification occurs via high allelism, and the continual and rapid gain, loss and shuffling of domains over evolutionary time. Given the marked differences in metazoan allorecognition genes, we propose the rapid evolution of AFs in sponges provides a model for understanding the extensive diversification of self-nonself recognition systems in the animal kingdom.

JTD Keywords: Aggregation factor, Allorecognition, Intron phase, Polymorphism, Porifera, RNA editing


Moles, E., Galiano, S., Gomes, A., Quiliano, M., Teixeira, C., Aldana, I., Gomes, P., Fernàndez-Busquets, X., (2017). ImmunoPEGliposomes for the targeted delivery of novel lipophilic drugs to red blood cells in a falciparum malaria murine model Biomaterials 145, 178-191

Most drugs currently entering the clinical pipeline for severe malaria therapeutics are of lipophilic nature, with a relatively poor solubility in plasma and large biodistribution volumes. Low amounts of these compounds do consequently accumulate in circulating Plasmodium-infected red blood cells, exhibiting limited antiparasitic activity. These drawbacks can in principle be satisfactorily dealt with by stably encapsulating drugs in targeted nanocarriers. Here this approach has been adapted for its use in immunocompetent mice infected by the Plasmodium yoelii 17XL lethal strain, selected as a model for human blood infections by Plasmodium falciparum. Using immunoliposomes targeted against a surface protein characteristic of the murine erythroid lineage, the protocol has been applied to two novel antimalarial lipophilic drug candidates, an aminoquinoline and an aminoalcohol. Large encapsulation yields of >90% were obtained using a citrate-buffered pH gradient method and the resulting immunoliposomes reached in vivo erythrocyte targeting and retention efficacies of >80%. In P. yoelii-infected mice, the immunoliposomized aminoquinoline succeeded in decreasing blood parasitemia from severe to uncomplicated malaria parasite densities (i.e. from ≥25% to ca. 5%), whereas the same amount of drug encapsulated in non-targeted liposomes had no significant effect on parasite growth. Pharmacokinetic analysis indicated that this good performance was obtained with a rapid clearance of immunoliposomes from the circulation (blood half-life of ca. 2 h), suggesting a potential for improvement of the proposed model.

JTD Keywords: Immunoliposomes, Malaria, Nanomedicine, Plasmodium falciparum, Plasmodium yoelii 17XL, Targeted drug delivery


Marques, J., Valle-Delgado, J. J., Urbán, P., Baró, E., Prohens, R., Mayor, A., Cisteró, P., Delves, M., Sinden, R. E., Grandfils, C., de Paz, J. L., García-Salcedo, J. A., Fernàndez-Busquets, X., (2017). Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery Nanomedicine: Nanotechnology, Biology, and Medicine 13, (2), 515-525

The adaptation of existing antimalarial nanocarriers to new Plasmodium stages, drugs, targeting molecules, or encapsulating structures is a strategy that can provide new nanotechnology-based, cost-efficient therapies against malaria. We have explored the modification of different liposome prototypes that had been developed in our group for the targeted delivery of antimalarial drugs to Plasmodium-infected red blood cells (pRBCs). These new models include: (i) immunoliposome-mediated release of new lipid-based antimalarials; (ii) liposomes targeted to pRBCs with covalently linked heparin to reduce anticoagulation risks; (iii) adaptation of heparin to pRBC targeting of chitosan nanoparticles; (iv) use of heparin for the targeting of Plasmodium stages in the mosquito vector; and (v) use of the non-anticoagulant glycosaminoglycan chondroitin 4-sulfate as a heparin surrogate for pRBC targeting. The results presented indicate that the tuning of existing nanovessels to new malaria-related targets is a valid low-cost alternative to the de novo development of targeted nanosystems.

JTD Keywords: Glycosaminoglycans, Malaria, Nanomedicine, Plasmodium, Targeted drug delivery


Caddeo, C., Manca, M. L., Matos, M., Gutierrez, G., Díez-Sales, O., Peris, J. E., Usach, I., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2017). Functional response of novel bioprotective poloxamer-structured vesicles on inflamed skin Nanomedicine: Nanotechnology, Biology, and Medicine 13, (3), 1127-1136

Resveratrol and gallic acid, a lipophilic and a hydrophilic phenol, were co-loaded in innovative, biocompatible nanovesicles conceived for ensuring the protection of the skin from oxidative- and inflammatory-related affections. The basic vesicles, liposomes and glycerosomes, were produced by a simple, one-step method involving the dispersion of phospholipid and phenols in water or water/glycerol blend, respectively. Liposomes and glycerosomes were modified by the addition of poloxamer, a stabilizer and viscosity enhancer, thus obtaining viscous or semisolid dispersions of structured vesicles. The vesicles were spherical, unilamellar and small in size (~70 nm in diameter). The superior ability of the poloxamer-structured vesicles to promote the accumulation of both phenols in the skin was demonstrated, as well as their low toxicity and great ability to protect fibroblasts from chemically-induced oxidative damage. The in vivo administration of the vesicular phenols on TPA (phorbol ester)-exposed skin led to a significant reduction of oedema and leukocyte infiltration.

JTD Keywords: Fibroblasts, Mice, Phenol, Phospholipid vesicle, Poloxamer, Skin inflammation


Caddeo, C., Pons, R., Carbone, C., Fernàndez-Busquets, X., Cardia, M. C., Maccioni, A. M., Fadda, A. M., Manconi, M., (2017). Physico-chemical characterization of succinyl chitosan-stabilized liposomes for the oral co-delivery of quercetin and resveratrol Carbohydrate Polymers , 157, 1853-1861

In the present work, quercetin and resveratrol, natural polyphenols with strong antioxidant and anti-inflammatory properties, were co-loaded in polymer-associated liposomes conceived for oral delivery, by exploiting the potential of pH-sensitive succinyl-chitosan. Chitosan was succinylated, characterized by Nuclear Magnetic Resonance spectroscopy and Gel Permeation Chromatography, and used to form a protective shell on the surface of liposomes. The physico-chemical properties of the succinyl-chitosan liposomes were assessed by light scattering, zeta potential, cryogenic transmission electron microscopy, and small angle X-ray scattering. Small, spherical, uni- and bilamellar vesicles were produced. The succinyl-chitosan shell increased not only the physical stability of the vesicular system, as demonstrated by accelerated stability tests, but also the release of the polyphenols to a greater extent at pH 7.0, mimicking the intestinal environment. The proposed approach based on polyphenol vesicular formulations may be of value in the treatment of pre-cancerous/cancerous intestinal conditions associated with inflammation and oxidative stress.

JTD Keywords: Antioxidant, Liposome, Oral delivery, Quercetin, Resveratrol, Succinyl-chitosan


Aláez-Versón, C. R., Lantero, E., Fernàndez-Busquets, X., (2017). Heparin: New life for an old drug Nanomedicine 12, (14), 1727-1744

Heparin is one of the oldest drugs, which nevertheless remains in widespread clinical use as an inhibitor of blood coagulation. The history of its identification a century ago unfolded amid one of the most fascinating scientific controversies turning around the distribution of credit for its discovery. The composition, purification and structure-function relationship of this naturally occurring glycosaminoglycan regarding its classical role as anticoagulant will be dealt with before proceeding to discuss its therapeutic potential in, among other, inflammatory and infectious disease, cancer treatment, cystic fibrosis and Alzheimer's disease. The first bibliographic reference hit using the words 'nanomedicine' and 'heparin' is as recent as 2008. Since then, nanomedical applications of heparin have experienced an exponential growth that will be discussed in detail, with particular emphasis on its antimalarial activity. Some of the most intriguing potential applications of heparin nanomedicines will be exposed, such as those contemplating the delivery of drugs to the mosquito stages of malaria parasites.

JTD Keywords: Anopheles, Antimalarial drugs, Heparin, Malaria, Mosquitoes, Nanomedicine, Nanotechnology, Plasmodium, Targeted drug delivery


Vitonyte, J., Manca, M. L., Caddeo, C., Valenti, D., Peris, J. E., Usach, I., Nacher, A., Matos, M., Gutiérrez, G., Orrù, G., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2017). Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries European Journal of Pharmaceutics and Biopharmaceutics 114, 278-287

Resveratrol and gallic acid were co-loaded in phospholipid vesicles aiming at protecting the skin from external injuries, such as oxidative stress and microbial infections. Liposomes were prepared using biocompatible phospholipids dispersed in water. To improve vesicle stability and applicability, the phospholipids and the phenols were dispersed in water/propylene glycol or water/glycerol, thus obtaining PEVs and glycerosomes, respectively. The vesicles were characterized by size, morphology, physical stability, and their therapeutic efficacy was investigated in vitro. The vesicles were spherical, unilamellar and small in size: liposomes and glycerosomes were around 70 nm in diameter, while PEVs were larger (∼170 nm). The presence of propylene glycol or glycerol increased the viscosity of the vesicle systems, positively affecting their stability. The ability of the vesicles to promote the accumulation of the phenols (especially gallic acid) in the skin was demonstrated, as well as their low toxicity and great ability to protect keratinocytes and fibroblasts from oxidative damage. Additionally, an improvement of the antimicrobial activity of the phenols was shown against different skin pathogens. The co-loading of resveratrol and gallic acid in modified phospholipid vesicles represents an innovative, bifunctional tool for preventing and treating skin affections.

JTD Keywords: Fibroblasts, Keratinocytes, Phenol, Phospholipid vesicle, Skin pathogens


Moles, E., Marcos, J., Imperial, S., Pozo, O. J., Fernàndez-Busquets, X., (2017). 2-picolylamine derivatization for high sensitivity detection of abscisic acid in apicomplexan blood-infecting parasites Talanta 168, 130-135

We have developed a new liquid chromatography-electrospray ionization tandem mass spectrometry methodology based on 2-picolylamine derivatization and positive ion mode detection for abscisic acid (ABA) identification. The selected reaction leads to the formation of an amide derivative which contains a highly active pyridyl group. The enhanced ionization allows for a 700-fold increase over commonly monitored unmodified ABA, which in turn leads to excellent limits of detection and quantification values of 0.03 and 0.15 ng mL-1, respectively. This method has been validated in the highly complex matrix of a red blood cell extract. In spite of the high sensitivity achieved, ABA could not be detected in Plasmodium falciparum-infected red blood cells, suggesting that, if present, it will be found either in ultratrace amounts or as brief bursts at defined time points within the intraerythrocytic cycle and/or in the form of a biosynthetic analogue.

JTD Keywords: Abscisic acid, Apicomplexa, Liquid chromatography-electrospray ionization tandem mass spectrometry, Malaria, Picolylamine, Plasmodium falciparum


Wang, Y., van Merwyk, L., Tönsing, K., Walhorn, V., Anselmetti, D., Fernàndez-Busquets, X., (2017). Biophysical characterization of the association of histones with single-stranded DNA Biochimica et Biophysica Acta (BBA) - General Subjects , 1861, (11), 2739-2749

Background: Despite the profound current knowledge of the architecture and dynamics of nucleosomes, little is known about the structures generated by the interaction of histones with single-stranded DNA (ssDNA), which is widely present during replication and transcription. Methods: Non-denaturing gel electrophoresis, transmission electron microscopy, atomic force microscopy, magnetic tweezers. Results: Histones have a high affinity for ssDNA in 0.15 M NaCl ionic strength, with an apparent binding constant similar to that calculated for their association with double-stranded DNA (dsDNA). The length of DNA (number of nucleotides in ssDNA or base pairs in dsDNA) associated with a fixed core histone mass is the same for both ssDNA and dsDNA. Although histone-ssDNA complexes show a high tendency to aggregate, nucleosome-like structures are formed at physiological salt concentrations. Core histones are able to protect ssDNA from digestion by micrococcal nuclease, and a shortening of ssDNA occurs upon its interaction with histones. The purified (+) strand of a cloned DNA fragment of nucleosomal origin has a higher affinity for histones than the purified complementary (−) strand. Conclusions: At physiological ionic strength histones have high affinity for ssDNA, possibly associating with it into nucleosome-like structures. General significance: In the cell nucleus histones may spontaneously interact with ssDNA to facilitate their participation in the replication and transcription of chromatin.

JTD Keywords: Electrophoresis, Force spectroscopy, Histones, Magnetic tweezers, Nucleosome, Single-stranded DNA


Moles, E., Moll, K., Ch'ng, J. H., Parini, P., Wahlgren, M., Fernàndez-Busquets, X., (2016). Development of drug-loaded immunoliposomes for the selective targeting and elimination of rosetting Plasmodium falciparum-infected red blood cells Journal of Controlled Release 241, 57-67

Parasite proteins exported to the surface of Plasmodium falciparum-parasitized red blood cells (pRBCs) have a major role in severe malaria clinical manifestation, where pRBC cytoadhesion and rosetting processes have been strongly linked with microvascular sequestration while avoiding both spleen filtration and immune surveillance. The parasite-derived and pRBC surface-exposed PfEMP1 protein has been identified as one of the responsible elements for rosetting and, therefore, considered as a promising vaccine candidate for the generation of rosette-disrupting antibodies against severe malaria. However, the potential role of anti-rosetting antibodies as targeting molecules for the functionalization of antimalarial drug-loaded nanovectors has never been studied. Our manuscript presents a proof-of-concept study where the activity of an immunoliposomal vehicle with a dual performance capable of specifically recognizing and disrupting rosettes while simultaneously eliminating those pRBCs forming them has been assayed in vitro. A polyclonal antibody against the NTS-DBL1α N-terminal domain of a rosetting PfEMP1 variant has been selected as targeting molecule and lumefantrine as the antimalarial payload. After 30 min incubation with 2 μM encapsulated drug, a 70% growth inhibition for all parasitic forms in culture (IC50: 414 nM) and a reduction in ca. 60% of those pRBCs with a rosetting phenotype (IC50: 747 nM) were achieved. This immunoliposomal approach represents an innovative combination therapy for the improvement of severe malaria therapeutics having a broader spectrum of activity than either anti-rosetting antibodies or free drugs on their own.

JTD Keywords: Combination therapy, Immunoliposomes, Malaria, Nanomedicine, Rosetting, Targeted drug delivery


Guivernau, B., Bonet, J., Valls-Comamala, V., Bosch-Morató, M., Godoy, J. A., Inestrosa, N. C., Perálvarez-Marín, A., Fernàndez-Busquets, X., Andreu, D., Oliva, B., Muñoz, F. J., (2016). Amyloid-β peptide nitrotyrosination stabilizes oligomers and enhances NMDAR-mediated toxicity Journal of Neuroscience , 36, (46), 11693-11703

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the pathological aggregation of the amyloid-β peptide (Aβ). Monomeric soluble Aβ can switch from helicoidal to β-sheet conformation, promoting its assembly into oligomers and subsequently to amyloid fibrils. Oligomers are highly toxic to neurons and have been reported to induce synaptic transmission impairments. The progression from oligomers to fibrils forming senile plaques is currently considered a protective mechanism to avoid the presence of the highly toxic oligomers. Protein nitration is a frequent post-translational modification under AD nitrative stress conditions. Aβ can be nitrated at tyrosine 10 (Y10) by peroxynitrite. Based on our analysis of ThT binding, Western blot and electron and atomic force microscopy, we report that Aβ nitration stabilizes soluble, highly toxic oligomers and impairs the formation of fibrils. We propose a mechanism by which fibril elongation is interrupted upon Y10 nitration: Nitration disrupts fibril-forming folds by preventing H14-mediated bridging, as shown with an Aβ analog containing a single residue (H to E) replacement that mimics the behavior of nitrated Aβ related to fibril formation and neuronal toxicity. The pathophysiological role of our findings in AD was highlighted by the study of these nitrated oligomers on mouse hippocampal neurons, where an increased NMDAR-dependent toxicity of nitrated Aβ oligomers was observed. Our results show that Aβ nitrotyrosination is a post-translational modification that increases Aβ synaptotoxicity.

JTD Keywords: Alzheimer, Amyloid, Nitrotyrosination, NMDA Rc, Oligomers, Peroxynitrite


Fernàndez-Busquets, X., (2016). Novel strategies for Plasmodium-targeted drug delivery Expert Opinion on Drug Delivery , 13, (7), 919-922

Marques, J., Vilanova, Eduardo, Mourão, Paulo A. S., Fernàndez-Busquets, Xavier, (2016). Marine organism sulfated polysaccharides exhibiting significant antimalarial activity and inhibition of red blood cell invasion by Plasmodium Scientific Reports 6, 24368

The antimalarial activity of heparin, against which there are no resistances known, has not been therapeutically exploited due to its potent anticoagulating activity. Here, we have explored the antiplasmodial capacity of heparin-like sulfated polysaccharides from the sea cucumbers Ludwigothurea grisea and Isostichopus badionotus, from the red alga Botryocladia occidentalis, and from the marine sponge Desmapsamma anchorata. In vitro experiments demonstrated for most compounds significant inhibition of Plasmodium falciparum growth at low-anticoagulant concentrations. This activity was found to operate through inhibition of erythrocyte invasion by Plasmodium, likely mediated by a coating of the parasite similar to that observed for heparin. In vivo four-day suppressive tests showed that several of the sulfated polysaccharides improved the survival of Plasmodium yoelii-infected mice. In one animal treated with I. badionotus fucan parasitemia was reduced from 10.4% to undetectable levels, and Western blot analysis revealed the presence of antibodies against P. yoelii antigens in its plasma. The retarded invasion mediated by sulfated polysaccharides, and the ensuing prolonged exposure of Plasmodium to the immune system, can be explored for the design of new therapeutic approaches against malaria where heparin-related polysaccharides of low anticoagulating activity could play a dual role as drugs and as potentiators of immune responses.

JTD


Vilanova, Eduardo, Santos, Gustavo R. C., Aquino, Rafael S., Valle-Delgado, Juan J., Anselmetti, Dario, Fernàndez-Busquets, Xavier, Mourão, Paulo A. S., (2016). Carbohydrate-carbohydrate interactions mediated by sulfate esters and calcium provide the cell adhesion required for the emergence of early metazoans Journal of Biological Chemistry , 291, (18), 9425-9437

Early metazoans had to evolve the first cell adhesion mechanism addressed to maintain a distinctive multicellular morphology. As the oldest extant animals, sponges are good candidates for possessing remnants of the molecules responsible for this crucial evolutionary innovation. Cell adhesion in sponges is mediated by the calcium-dependent multivalent self-interactions of sulfated polysaccharides components of extracellular membrane-bound proteoglycans, namely aggregation factors. Here, we used atomic force microscopy to demonstrate that the aggregation factor of the sponge Desmapsamma anchorata has a circular supramolecular structure and that it thus belongs to the spongican family. Its sulfated polysaccharide units, which were characterized via nuclear magnetic resonance analysis, consist preponderantly of a central backbone composed of 3-α-Glc1 units partially sulfated at 2- and 4-positions and branches of Pyr(4,6)α-Gal1→3-α-Fuc2(SO3)1→3-α-Glc4(SO3)1→3-α-Glc→4-linked to the central α-Glc units. Single-molecule force measurements of self-binding forces of this sulfated polysaccharide and their chemically desulfated and carboxyl-reduced derivatives revealed that the sulfate epitopes and extracellular calcium are essential for providing the strength and stability necessary to sustain cell adhesion in sponges. We further discuss these findings within the framework of the role of molecular structures in the early evolution of metazoans.

JTD


Credi, C., De Marco, C., Molena, E., Pla Roca, M., Samitier, J., Marques, J., Fernàndez-Busquets, X., Levi, M., Turri, S., (2016). Heparin micropatterning onto fouling-release perfluoropolyether-based polymers via photobiotin activation Colloids and Surfaces B: Biointerfaces 146, 250-259

A simple method for constructing versatile ordered biotin/avidin arrays on UV-curable perfluoropolyethers (PFPEs) is presented. The goal is the realization of a versatile platform where any biotinylated biological ligands can be further linked to the underlying biotin/avidin array. To this end, microcontact arrayer and microcontact printing technologies were developed for photobiotin direct printing on PFPEs. As attested by fluorescence images, we demonstrate that this photoactive form of biotin is capable of grafting onto PFPEs surfaces during irradiation. Bioaffinity conjugation of the biotin/avidin system was subsequently exploited for further self-assembly avidin family proteins onto photobiotin arrays. The excellent fouling release PFPEs surface properties enable performing avidin assembly step simply by arrays incubation without PFPEs surface passivation or chemical modification to avoid unspecific biomolecule adsorption. Finally, as a proof of principle biotinylated heparin was successfully grafted onto photobiotin/avidin arrays.

JTD Keywords: Antifouling, Heparin, Malaria, Microcontact arrayer, Microcontact printing, Micropatterning, Perfluoropolyether, Photobiotin, Polymers, Soft lithography


Caddeo, C., Nacher, A., Vassallo, A., Armentano, M. F., Pons, R., Fernàndez-Busquets, X., Carbone, C., Valenti, D., Fadda, A. M., Manconi, M., (2016). Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer International Journal of Pharmaceutics 513, (1-2), 153-163

The present investigation reports the development of liposomes for the co-delivery of naturally occurring polyphenols, namely quercetin and resveratrol. Small, spherical, uni/bilamellar vesicles were produced, as demonstrated by light scattering, cryo-TEM, SAXS. The incorporation of quercetin and resveratrol in liposomes did not affect their intrinsic antioxidant activity, as DPPH radical was almost completely inhibited. The cellular uptake of the polyphenols was higher when they were formulated in liposomes, and especially when co-loaded rather than as single agents, which resulted in a superior ability to scavenge ROS in fibroblasts. The in vivo efficacy of the polyphenols in liposomes was assessed in a mouse model of skin lesion. The topical administration of liposomes led to a remarkable amelioration of the tissue damage, with a significant reduction of oedema and leukocyte infiltration. Therefore, the proposed approach based on polyphenol vesicular formulation may be of value in the treatment of inflammation/oxidative stress associated with pre-cancerous/cancerous skin lesions.

JTD Keywords: Antioxidant, Fibroblast, Liposome, Quercetin, Resveratrol, Skin lesion


Valle-Delgado, J. J., Fernàndez-Busquets, X., (2016). Rapid diagnostic tests for malaria: Past, present and future Future Microbiology , 11, (11), 1379-1382

Moles, Ernest, Valle-Delgado, Juan José, Urbán, Patricia, Azcárate, Isabel G., Bautista, José M., Selva, Javier, Egea, Gustavo, Ventura, Salvador, Fernàndez-Busquets, Xavier, (2015). Possible roles of amyloids in malaria pathophysiology Future Science OA , 1, (2), FSO43

The main therapeutic and prophylactic tools against malaria have been locked for more than a century in the classical approaches of using drugs targeting metabolic processes of the causing agent, the protist Plasmodium spp., and of designing vaccines against chosen antigens found on the parasite’s surface. Given the extraordinary resources exhibited by Plasmodium to escape these traditional strategies, which have not been able to free humankind from the scourge of malaria despite much effort invested in them, new concepts have to be explored in order to advance toward eradication of the disease. In this context, amyloid-forming proteins and peptides found in the proteome of the pathogen should perhaps cease being regarded as mere anomalous molecules. Their likely functionality in the pathophysiology of Plasmodium calls for attention being paid to them as a possible Achilles’ heel of malaria. Here we will give an overview of Plasmodium-encoded amyloid-forming polypeptides as potential therapeutic targets and toxic elements, particularly in relation to cerebral malaria and the blood–brain barrier function. We will also discuss the recent finding that the genome of the parasite contains an astonishingly high proportion of prionogenic domains.

JTD Keywords: Amyloids, Intrinsically unstructured proteins, Malaria, Prions


Manca, M. L., Castangia, I., Zaru, M., Nácher, A., Valenti, D., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2015). Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring Biomaterials 71, 100-109

In the present work new highly biocompatible nanovesicles were developed using polyanion sodium hyaluronate to form polymer immobilized vesicles, so called hyalurosomes. Curcumin, at high concentration was loaded into hyalurosomes and physico-chemical properties and in vitro/in vivo performances of the formulations were compared to those of liposomes having the same lipid and drug content. Vesicles were prepared by direct addition of dispersion containing the polysaccharide sodium hyaluronate and the polyphenol curcumin to a commercial mixture of soy phospholipids, thus avoiding the use of organic solvents. An extensive study was carried out on the physico-chemical features and properties of curcumin-loaded hyalurosomes and liposomes. Cryogenic transmission electron microscopy and small-angle X-ray scattering showed that vesicles were spherical, uni- or oligolamellar and small in size (112-220 nm). The in vitro percutaneous curcumin delivery studies on intact skin showed an improved ability of hyalurosomes to favour a fast drug deposition in the whole skin. Hyalurosomes as well as liposomes were biocompatible, protected in vitro human keratinocytes from oxidative stress damages and promoted tissue remodelling through cellular proliferation and migration. Moreover, in vivo tests underlined a good effectiveness of curcumin-loaded hyalurosomes to counteract 12-O-tetradecanoilphorbol (TPA)-produced inflammation and injuries, diminishing oedema formation, myeloperoxydase activity and providing an extensive skin reepithelization. Thanks to the one-step and environmentally-friendly preparation method, component biocompatibility and safety, good in vitro and in vivo performances, the hyalurosomes appear as promising nanocarriers for cosmetic and pharmaceutical applications.

JTD Keywords: Cell oxidative stress, Hyaluronic acid/Hyaluronan, Phospholipid vesicles, Polyphenols, Skin inflammation, Wound healing


Moles, E., Urbán, P., Jiménez-Díaz, M. B., Viera-Morilla, S., Angulo-Barturen, I., Busquets, M. A., Fernàndez-Busquets, X., (2015). Immunoliposome-mediated drug delivery to Plasmodium-infected and non-infected red blood cells as a dual therapeutic/prophylactic antimalarial strategy Journal of Controlled Release 210, 217-229

One of the most important factors behind resistance evolution in malaria is the failure to deliver sufficiently high amounts of drugs to early stages of Plasmodium-infected red blood cells (pRBCs). Despite having been considered for decades as a promising approach, the delivery of antimalarials encapsulated in immunoliposomes targeted to pRBCs has not progressed towards clinical applications, whereas in vitro assays rarely reach drug efficacy improvements above 10-fold. Here we show that encapsulation efficiencies reaching >96% are achieved for the weak basic drugs chloroquine (CQ) and primaquine using the pH gradient loading method in liposomes containing neutral saturated phospholipids. Targeting antibodies are best conjugated through their primary amino groups, adjusting chemical crosslinker concentration to retain significant antigen recognition. Antigens from non-parasitized RBCs have also been considered as targets for the delivery to the cell of drugs not affecting the erythrocytic metabolism. Using this strategy, we have achieved unprecedented complete nanocarrier targeting to early intraerythrocytic stages of the malaria parasite for which there is a lack of specific extracellular molecular tags. Immunoliposomes studded with monoclonal antibodies raised against the erythrocyte surface protein glycophorin A were capable of targeting 100% RBCs and pRBCs at the low concentration of 0.5 μM total lipid in the culture, with >95% of added liposomes retained on cell surfaces. When exposed for only 15 min to Plasmodium falciparum in vitro cultures of early stages, free CQ had no significant effect on the viability of the parasite up to 200 nM, whereas immunoliposomal 50 nM CQ completely arrested its growth. In vivo assays in mice showed that immunoliposomes cleared the pathogen below detectable levels at a CQ dose of 0.5 mg/kg, whereas free CQ administered at 1.75 mg/kg was, at most, 40-fold less efficient. Our data suggest that this significant improvement is in part due to a prophylactic effect of CQ found by the pathogen in its host cell right at the very moment of invasion.

JTD Keywords: Immunoliposomes, Malaria, Nanomedicine, Plasmodium, Targeted drug delivery


Castangia, I., Nácher, A., Caddeo, C., Merino, V., Díez-Sales, O., Catalán-Latorre, A., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2015). Therapeutic efficacy of quercetin enzyme-responsive nanovesicles for the treatment of experimental colitis in rats Acta Biomaterialia 13, 216-227

Biocompatible quercetin nanovesicles were developed by coating polyethylene glycol-containing vesicles with chitosan and nutriose, aimed at targeting the colon. Uncoated and coated vesicles were prepared using hydrogenated soy phosphatidylcholine and quercetin, a potent natural anti-inflammatory and antioxidant drug. Physicochemical characterization was carried out by light scattering, cryogenic microscopy and X-ray scattering, the results showing that vesicles were predominantly multilamellar and around 130 nm in size. The in vitro release of quercetin was investigated under different pH conditions simulating the environment of the gastrointestinal tract, and confirmed that the chitosan/nutriose coating improved the gastric resistance of vesicles, making them a potential carrier system for colon delivery. The preferential localization of fluorescent vesicles in the intestine was demonstrated using the In Vivo FX PRO Imaging System. Above all, a marked amelioration of symptoms of 2,4,6-trinitrobenzenesulfonic acid-induced colitis was observed in animals treated with quercetin-loaded coated vesicles, favoring the restoration of physiological conditions. Therefore, quercetin-loaded chitosan/nutriose-coated vesicles can represent a valuable therapeutic tool for the treatment of chronic intestinal inflammatory diseases, and presumably a preventive system, due to the synergic action of antioxidant quercetin and beneficial prebiotic effects of the chitosan/nutriose complex.

JTD Keywords: Chitosan/nutriose complex, Colon targeting, Phospholipid vesicles, Quercetin, Rat colitis


Urbán, Patricia, Ranucci, Elisabetta, Fernàndez-Busquets, Xavier, (2015). Polyamidoamine nanoparticles as nanocarriers for the drug delivery to malaria parasite stages in the mosquito vector Nanomedicine 10, (22), 3401-3414

Malaria is arguably one of the main medical concerns worldwide because of the numbers of people affected, the severity of the disease and the complexity of the life cycle of its causative agent, the protist Plasmodium spp. With the advent of nanoscience, renewed hopes have appeared of finally obtaining the long sought-after magic bullet against malaria in the form of a nanovector for the targeted delivery of antimalarial compounds exclusively to Plasmodium-infected cells, thus increasing drug efficacy and minimizing the induction of resistance to newly developed therapeutic agents. Polyamidoamine-derived nanovectors combine into a single chemical structure drug encapsulating capacity, antimalarial activity, low unspecific toxicity, specific targeting to Plasmodium, optimal in vivo activity and affordable synthesis cost. After having shown their efficacy in targeting drugs to intraerythrocytic parasites, now polyamidoamines face the challenge of spearheading a new generation of nanocarriers aiming at the malaria parasite stages in the mosquito vector.

JTD


Moles, E., Fernàndez-Busquets, X., (2015). Loading antimalarial drugs into noninfected red blood cells: An undesirable roommate for Plasmodium Future Medicinal Chemistry 7, (7), 837-840

The malaria parasite, Plasmodium spp., is a delicate unicellular organism unable to survive in free form for more than a couple of minutes in the bloodstream. Upon injection in a human by its Anopheles mosquito vector, Plasmodium sporozoites pass through the liver with the aim of invading hepatocytes. Those which succeed spend inside their host cell a recovery time before replicating and entering the blood circulation as fragile merozoites, although their exposure to host defenses is extraordinarily short. Quick invasion of red blood cells (RBCs) in a process lasting just a few minutes allows the parasite to escape immune system surveillance. For most of its erythrocytic cycle the pathogen feeds mainly on hemoglobin as it progresses from the early blood stages, termed rings, to the late forms trophozoites and schizonts. Early stages are ideal targets for antimalarial therapies because drugs delivered to them would have a longer time to kill the parasite before it completes its development. However, only 6 h after invasion does the permeability of the infected erythrocyte to anions and small nonelectrolytes, including some drugs, start to increase as the parasite matures [1]. During this maturation process the parasite hydrolyzes hemoglobin in a digestive vacuole, which is the target of many amphiphilic drugs that freely cross the RBC membrane and accumulate intracellularly. As a result, most antimalarials start affecting the infected cell relatively late in the intraerythrocytic parasite life cycle, when their effect is probably often too short to be lethal to Plasmodium.

JTD Keywords: Malaria, Nanomedicine, Plasmodium, Red blood cell, Targeted drug delivery


Castangia, I., Manca, M. L., Matricardi, P., Catalán-Latorre, A., Nácher, A., Diez-Sales, O., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2015). Effects of ethanol and diclofenac on the organization of hydrogenated phosphatidylcholine bilayer vesicles and their ability as skin carriers Journal of Materials Science: Materials in Medicine , 26, 137

In this study, the effects of ethanol and/or diclofenac on vesicle bilayer structure have been studied. Liposomes with hydrogenated soy phosphatidylcholine, cholesterol and two different concentrations of diclofenac sodium (5 and 10 mg/ml) were obtained. In addition, ethanol was mixed in the water phase at different concentrations (5, 10 and 20 % v/v) to obtain ethosomes. To characterize vesicles, rehological analysis were carried out to investigate the intervesicle interactions, while bilayer structure was evaluated by small- and wide-angle X-ray scattering. Finally, the ethanol and/or diclofenac concentration-dependent ability to improve diclofenac skin delivery was evaluated in vitro. The addition of 20 % ethanol and/or diclofenac led to solid-like ethosome dispersion due to the formation of a new intervesicle structure, as previously found in transcutol containing vesicle dispersions. However, when using 5–10 % of ethanol the induction to form vesicle interconnections was less evident but the simultaneous presence of the drug at the highest concentration facilitated this phenomenon. Ethosomes containing the highest amount of both, drug (10 mg/ml) and ethanol (20 % v/v), improved the drug deposition in the skin strata and in the receptor fluid up to 1.5-fold, relative to liposomes. Moreover this solid-like formulation can easily overcome drawbacks of traditional liquid liposome formulations which undergo a substantial loss at the application site.

JTD


Fernàndez-Busquets, X., de Groot, N.S., Ventura, S., (2015). Structural and computational insights into conformational diseases: A review Frontiers in Medicinal Chemistry (ed. Atta-ur-Rahman, Reitz, A.B., Choudhary, I, Wang, J.), Bentham Science Publishers (Bussum, The Netherlands) 7, 134-182

Protein aggregation correlates with the development of several deleterious human disorders such as Alzheimer's disease, Parkinson's disease, prion-associated transmissible spongiform encephalopathies, type II diabetes and several types of cancers. The polypeptides involved in these disorders may be globular proteins with a defined 3Dstructure or natively unfolded proteins in their soluble conformations. In either case, proteins associated with these pathogenesis all aggregate into amyloid fibrils sharing a common structure, in which β-strands of polypeptide chains are perpendicular to the fibril axis. Because of the prominence of amyloid deposits in many of these diseases, much effort has gone into elucidating the structural basis of protein aggregation. A number of recent experimental and theoretical studies have significantly increased our understanding of the process. On the one hand, solid-state NMR, X-ray crystallography and single molecule methods have provided us with the first high-resolution 3D structures of amyloids, showing that they exhibit conformational plasticity and are able to adopt different stable tertiary folds, with impact both their transmissibility and neurotoxicity. On the other hand, several computational approaches have identified regions prone to aggregation in disease-linked polypeptides, predicted the differential aggregation propensities of their genetic variants and simulated the early, crucial steps of the oligomerization reaction. This review summarizes these findings and their therapeutic relevance, as by uncovering specific structural or sequential targets they may provide us with a means to tackle the debilitating diseases linked to protein aggregation.

JTD


Pujol, A., Urbán, P., Riera, C., Fisa, R., Molina, I., Salvador, F., Estelrich, J., Fernàndez-Busquets, X., (2014). Application of quantum dots to the study of liposome targeting in leishmaniasis and malaria International Journal of Theoretical and Applied Nanotechnology , 2, (1), 1-8

Nanotechnological devices for therapeutic applications are massively addressed to diseases prevalent in the developed world, particularly cancer, because of the wrong assumption (for both ethical and technical reasons) that nanomedicines are too expensive and thus they can not be applied to diseases of poverty. Here we have applied quantum dots to study at the cellular level the delivery of the contents of liposomes to erythrocytes infected by the malaria parasite Plasmodium falciparum, and to macrophages infected by the leishmaniasis causative agent Leishmania infantum. A number of works have reported on the encapsulation in liposomes of drugs against both diseases as a strategy to increase therapeutic efficacy and decrease unspecific toxicity. Liposome-carried drugs end up inside Plasmodium-infected red blood cells (pRBCs) and in the phagolysosome system of Leishmania-infected macrophages but some knowledge gaps still obscure subcellular events related to these processes. As a proof of concept, we have used confocal fluorescence microscopy to follow the fate in pRBCs and infected macrophages of quantum dots encapsulated in liposomes, and of lysosomes, leishmaniasis and malaria parasites, nuclei, and phagosomes. Our data indicate that liposomes merge their lipid bilayers with pRBC plasma membranes but are engulfed by macrophages, where they fuse with lysosomes. Lysosomes have not been observed to join with phagosomes harboring single Leishmania parasites, whereas in phagosomes where the parasite has divided there is lysosome-specific fluorescence with a concomitant disappearance of lysosomes from the cytosol. In later stages, all the lysosome-specific label is found inside phagosomes whereas the phagosomal marker cadaverine strongly stains the macrophage nucleus, suggesting that Leishmania infection induces in its later stages nuclear degeneration and, possibly, apoptosis of the host cell. These results indicate that induction of macrophage apoptosis should be explored as a possible strategy used by Leishmania to prepare its egress.

JTD Keywords: Leishmania infantum, Leishmaniasis Liposomes, Malaria, Nanomedicine, Nanotechnology, Plasmodium falciparum, Quantum dots


Fernàndez-Busquets, X., (2014). Toy kit against malaria: Magic bullets, LEGO, Trojan horses and Russian dolls Therapeutic Delivery , 5, (10), 1049-1052

Movellan, J., Urbán, P., Moles, E., de la Fuente, J. M., Sierra, T., Serrano, J. L., Fernàndez-Busquets, X., (2014). Amphiphilic dendritic derivatives as nanocarriers for the targeted delivery of antimalarial drugs Biomaterials 35, (27), 7940-7950

It can be foreseen that in a future scenario of malaria eradication, a varied armamentarium will be required, including strategies for the targeted administration of antimalarial compounds. The development of nanovectors capable of encapsulating drugs and of delivering them to Plasmodium-infected cells with high specificity and efficacy and at an affordable cost is of particular interest. With this objective, dendritic derivatives based on 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) and Pluronic® polymers have been herein explored. Four different dendritic derivatives have been tested for their capacity to encapsulate the antimalarial drugs chloroquine (CQ) and primaquine (PQ), their specific targeting to Plasmodium-infected red blood cells (pRBCs), and their antimalarial activity in vitro against the human pathogen Plasmodium falciparum and in vivo against the rodent malaria species Plasmodium yoelii. The results obtained have allowed the identification of two dendritic derivatives exhibiting specific targeting to pRBCs vs. non-infected RBCs, which reduce the in vitro IC50 of CQ and PQ by ca. 3- and 4-fold down to 4.0 nm and 1.1 μm, respectively. This work on the application of dendritic derivatives to antimalarial targeted drug delivery opens the way for the use of this new type of chemicals in future malaria eradication programs.

JTD Keywords: Antimalarial targeted drug delivery, Dendrimers, Malaria, Nanomedicine, Plasmodium, Polymeric nanoparticles


Urbán, P., Valle-Delgado, J. J., Mauro, N., Marques, J., Manfredi, A., Rottmann, M., Ranucci, E., Ferruti, P., Fernàndez-Busquets, X., (2014). Use of poly(amidoamine) drug conjugates for the delivery of antimalarials to Plasmodium Journal of Controlled Release 177, (1), 84-95

Current malaria therapeutics demands strategies able to selectively deliver drugs to Plasmodium-infected red blood cells (pRBCs) in order to limit the appearance of parasite resistance. Here, the poly(amidoamines) AGMA1 and ISA23 have been explored for the delivery of antimalarial drugs to pRBCs. AGMA1 has antimalarial activity per se as shown by its inhibition of the in vitrogrowth of Plasmodium falciparum, with an IC50 of 13.7 μM. Fluorescence-assisted cell sorting data and confocal fluorescence microscopy and transmission electron microscopy images indicate that both polymers exhibit preferential binding to and internalization into pRBCs versus RBCs, and subcellular targeting to the parasite itself in widely diverging species such as P. falciparum and Plasmodium yoelii, infecting humans and mice, respectively. AGMA1 and ISA23 polymers with hydrodynamic radii around 7 nm show a high loading capacity for the antimalarial drugs primaquine and chloroquine, with the final conjugate containing from 14.2% to 32.9% (w/w) active principle. Intraperitoneal administration of 0.8 mg/kg chloroquine as either AGMA1 or ISA23 salts cured P. yoelii–infected mice, whereas control animals treated with twice as much free drug did not survive. These polymers combining into a single chemical structure drug carrying capacity, low unspecific toxicity, high biodegradability and selective internalization into pRBCs, but not in healthy erythrocytes for human and rodent malarias, may be regarded as promising candidates deserving to enter the antimalarial therapeutic arena.

JTD Keywords: Malaria, Nanomedicine, Plasmodium, Polyamidoamines, Polymer-drug carriers, Targeted drug delivery


Marques, J., Moles, E., Urbán, P., Prohens, R., Busquets, M. A., Sevrin, C., Grandfils, C., Fernàndez-Busquets, X., (2014). Application of heparin as a dual agent with antimalarial and liposome targeting activities toward Plasmodium-infected red blood cells Nanomedicine: Nanotechnology, Biology, and Medicine 10, (8), 1719-1728

Heparin had been demonstrated to have antimalarial activity and specific binding affinity for Plasmodium-infected red blood cells (pRBCs) vs. non-infected erythrocytes. Here we have explored if both properties could be joined into a drug delivery strategy where heparin would have a dual role as antimalarial and as a targeting element of drug-loaded nanoparticles. Confocal fluorescence and transmission electron microscopy data show that after 30. min of being added to living pRBCs fluorescein-labeled heparin colocalizes with the intracellular parasites. Heparin electrostatically adsorbed onto positively charged liposomes containing the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane and loaded with the antimalarial drug primaquine was capable of increasing three-fold the activity of encapsulated drug in Plasmodium falciparum cultures. At concentrations below those inducing anticoagulation of mouse blood in vivo, parasiticidal activity was found to be the additive result of the separate activities of free heparin as antimalarial and of liposome-bound heparin as targeting element for encapsulated primaquine. From the Clinical Editor: Malaria remains an enormous global public health concern. In this study, a novel functionalized heparin formulation used as drug delivery agent for primaquine was demonstrated to result in threefold increased drug activity in cell cultures, and in a murine model it was able to provide these benefits in concentrations below what would be required for anticoagulation. Further studies are needed determine if this approach is applicable in the human disease as well.

JTD Keywords: Heparin, Liposomes, Malaria, Plasmodium, Targeted drug delivery, Heparin, Malaria, Plasmodium, Red blood cell, Targeted drug delivery, Liposomes, 1,2 dioleoyl 3 trimethylammoniopropane, fluorescein, heparin, liposome, nanoparticle, primaquine, adsorption, animal experiment, anticoagulation, antimalarial activity, Article, binding affinity, confocal microscopy, controlled study, drug targeting, encapsulation, erythrocyte, female, fluorescence microscopy, human, human cell, in vivo study, liposomal delivery, mouse, nonhuman, Plasmodium falciparum, transmission electron microscopy


Paaijmans, Krijn, Fernàndez-Busquets, Xavier, (2014). Antimalarial drug delivery to the mosquito: an option worth exploring? Future Microbiology , 9, (5), 579-582

Manca, M. L., Castangia, I., Matricardi, P., Lampis, S., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2014). Molecular arrangements and interconnected bilayer formation induced by alcohol or polyalcohol in phospholipid vesicles Colloids and Surfaces B: Biointerfaces 117, 360-367

A self-assembled hybrid phospholipid vesicular system containing various penetration enhancers - ethanol, Transcutol and propylenglycol - was prepared and characterized. The effects of the different alcohol or polyalcohols structure and their concentration on the features of the assembled vesicles were evaluated using a combination of different techniques, including cryo-transmission electron microscopy, laser light scattering, differential scanning calorimetry, small- and wide-angle X-ray scattering and rheological analysis. These techniques allow explaining the structural rearrangements of the bilayer assembly due to the alcohol or polyalcohol addition. X-ray scattering studies showed that such addition at the highest concentration (20%) allowed structure modification to oligolamellar vesicles and a bilayer transition to interdigitated phase. Rheological studies confirmed the importance of alcohol or polyalcohol in the structuring dispersions probably due to a partial tilting of phosphatidylcholine acyl chains forming interdigitated and interconnected bilayer vesicles.

JTD Keywords: (Poly)alcohols, Cryo-TEM, DSC, Liposomes, Penetration Enhancer containing Vesicle (PEVs), Rheology, SAXS


Ramos-Fernández, E., Tajes, M., Palomer, E., Ill-Raga, G., Bosch-Morató, M., Guivernau, B., Román-Dégano, I., Eraso-Pichot, A., Alcolea, D., Fortea, J., Nuñez, L., Paez, A., Alameda, F., Fernàndez-Busquets, X., Lleó, A., Elosúa, R., Boada, M., Valverde, M. A., Muñoz, F. J., (2014). Posttranslational nitro-glycative modifications of albumin in Alzheimer's disease: Implications in cytotoxicity and amyloid-β peptide aggregation Journal of Alzheimer's Disease , 40, (3), 643-657

Glycation and nitrotyrosination are pathological posttranslational modifications that make proteins prone to losing their physiological properties. Since both modifications are increased in Alzheimer's disease (AD) due to amyloid-β peptide (Aβ) accumulation, we have studied their effect on albumin, the most abundant protein in cerebrospinal fluid and blood. Brain and plasmatic levels of glycated and nitrated albumin were significantly higher in AD patients than in controls. In vitro turbidometry and electron microscopy analyses demonstrated that glycation and nitrotyrosination promote changes in albumin structure and biochemical properties. Glycated albumin was more resistant to proteolysis and less uptake by hepatoma cells occurred. Glycated albumin also reduced the osmolarity expected for a solution containing native albumin. Both glycation and nitrotyrosination turned albumin cytotoxic in a cell type-dependent manner for cerebral and vascular cells. Finally, of particular relevance to AD, these modified albumins were significantly less effective in avoiding Aβ aggregation than native albumin. In summary, nitrotyrosination and especially glycation alter albumin structural and biochemical properties, and these modifications might contribute for the progression of AD.

JTD Keywords: Albumin, Alzheimer's disease, amyloid, glycation, nitrotyrosination, oxidative stress


Urbán, P., Fernàndez-Busquets, X., (2014). Nanomedicine against malaria Current Medicinal Chemistry , 21, (5), 605-629

Malaria is arguably one of the main medical concerns worldwide because of the numbers of people affected, the severity of the disease and the complexity of the life cycle of its causative agent, the protist Plasmodium sp. The clinical, social and economic burden of malaria has led for the last 100 years to several waves of serious efforts to reach its control and eventual eradication, without success to this day. With the advent of nanoscience, renewed hopes have appeared of finally obtaining the long sought-after magic bullet against malaria in the form of a nanovector for the targeted delivery of antimalarial drugs exclusively to Plasmodium-infected cells. Different types of encapsulating structure, targeting molecule, and antimalarial compound will be discussed for the assembly of Trojan horse nanocapsules capable of targeting with complete specificity diseased cells and of delivering inside them their antimalarial cargo with the objective of eliminating the parasite with a single dose. Nanotechnology can also be applied to the discovery of new antimalarials through single-molecule manipulation approaches for the identification of novel drugs targeting essential molecular components of the parasite. Finally, methods for the diagnosis of malaria can benefit from nanotools applied to the design of microfluidic-based devices for the accurate identification of the parasite's strain, its precise infective load, and the relative content of the different stages of its life cycle, whose knowledge is essential for the administration of adequate therapies. The benefits and drawbacks of these nanosystems will be considered in different possible scenarios, including cost-related issues that might be hampering the development of nanotechnology-based medicines against malaria with the dubious argument that they are too expensive to be used in developing areas.

JTD Keywords: Dendrimers, Liposomes, Malaria diagnosis, Nanobiosensors, Nanoparticles, Plasmodium, Polymers, Targeted drug delivery


Caddeo, C., Díez-Sales, O., Pons, R., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2014). Topical anti-inflammatory potential of quercetin in lipid-based nanosystems: In vivo and in vitro evaluation Pharmaceutical Research , 31, (4), 959-968

Purpose: To develop quercetin-loaded phospholipid vesicles, namely liposomes and PEVs (Penetration Enhancer-containing Vesicles), and to investigate their efficacy on TPA-induced skin inflammation. Methods: Vesicles were made from a mixture of phospholipids, quercetin and polyethylene glycol 400 (PEG), specifically added to increase drug solubility and penetration through the skin. Vesicle morphology and self-assembly were probed by Cryo-Transmission Electron Microscopy and Small/Wide Angle X-ray Scattering, as well as the main physico-chemical features by Light Scattering. The anti-inflammatory efficacy of quercetin nanovesicles was assessed in vivo on TPA-treated mice dorsal skin by the determination of two biomarkers: oedema formation and myeloperoxidase activity. The uptake of vesicles by 3T3 fibroblasts was also evaluated. Results: Small spherical vesicles were produced. Their size and lamellarity was strongly influenced by the PEG content (0%, 5%, 10% v/v). The administration of vesicular quercetin on TPA-inflamed skin resulted in an amelioration of the tissue damage, with a noticeable attenuation of oedema and leukocyte infiltration, especially using 5% PEG-PEVs, as also confirmed by confocal microscopy. In vitro studies disclosed a massive uptake and diffusion of PEVs in dermal fibroblasts. Conclusions: The proposed approach based on quercetin vesicular formulations may be of value in the treatment of inflammatory skin disorders.

JTD


Le Roux, D., Burger, P. B., Niemand, J., Grobler, A., Urbán, P., Fernàndez-Busquets, X., Barker, R. H., Serrano, A. E., I. Louw, A., Birkholtz, L. M., (2014). Novel S-adenosyl-L-methionine decarboxylase inhibitors as potent antiproliferative agents against intraerythrocytic Plasmodium falciparum parasites International Journal for Parasitology: Drugs and Drug Resistance , 4, (1), 28-36

S-adenosyl-l-methionine decarboxylase (AdoMetDC) in the polyamine biosynthesis pathway has been identified as a suitable drug target in Plasmodium falciparum parasites, which causes the most lethal form of malaria. Derivatives of an irreversible inhibitor of this enzyme, 5'-{[(Z)-4-amino-2-butenyl]methylamino}-5'-deoxyadenosine (MDL73811), have been developed with improved pharmacokinetic profiles and activity against related parasites, Trypanosoma brucei. Here, these derivatives were assayed for inhibition of AdoMetDC from P. falciparum parasites and the methylated derivative, 8-methyl-5'-{[(Z)-4-aminobut-2-enyl]methylamino}-5'-deoxyadenosine (Genz-644131) was shown to be the most active. The in vitro efficacy of Genz-644131 was markedly increased by nanoencapsulation in immunoliposomes, which specifically targeted intraerythrocytic P. falciparum parasites.

JTD Keywords: Immunoliposomes, Plasmodium, Polyamines, S-adenosyl-l-methionine decarboxylase


Tajes, M., Ramos-Fernández, E., Weng-Jiang, X., Bosch-Morató, M., Guivernau, B., Eraso-Pichot, A., Salvador, B., Fernàndez-Busquets, X., Roquer, J., Muñoz, F. J., (2014). The blood-brain barrier: Structure, function and therapeutic approaches to cross it Molecular Membrane Biology , 31, (5), 152-167

The blood-brain barrier (BBB) is constituted by a specialized vascular endothelium that interacts directly with astrocytes, neurons and pericytes. It protects the brain from the molecules of the systemic circulation but it has to be overcome for the proper treatment of brain cancer, psychiatric disorders or neurodegenerative diseases, which are dramatically increasing as the population ages. In the present work we have revised the current knowledge on the cellular structure of the BBB and the different procedures utilized currently and those proposed to cross it. Chemical modifications of the drugs, such as increasing their lipophilicity, turn them more prone to be internalized in the brain. Other mechanisms are the use of molecular tools to bind the drugs such as small immunoglobulins, liposomes or nanoparticles that will act as Trojan Horses favoring the drug delivery in brain. This fusion of the classical pharmacology with nanotechnology has opened a wide field to many different approaches with promising results to hypothesize that BBB will not be a major problem for the new generation of neuroactive drugs. The present review provides an overview of all state-of-the-art of the BBB structure and function, as well as of the classic strategies and these appeared in recent years to deliver drugs into the brain for the treatment of Central Nervous System (CNS) diseases.

JTD Keywords: Blood brain barrier, Drug delivery, Membrane transport


Valle-Delgado, J. J., Urbán, P., Fernàndez-Busquets, X., (2013). Demonstration of specific binding of heparin to Plasmodium falciparum-infected vs. non-infected red blood cells by single-molecule force spectroscopy Nanoscale 5, (9), 3673-3680

Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force ranging between 28 and 46 pN depending on the loading rate. No significant binding of heparin to non-infected RBCs has been observed in control experiments. This work represents the first approach to quantitatively evaluate GAG-pRBC molecular interactions at the individual molecule level.

JTD


Fernàndez-Busquets, X., (2013). Amyloid fibrils in neurodegenerative diseases: villains or heroes? Future Medicinal Chemistry 5, (16), 1903-1906

Fernàndez-Busquets, X., (2013). Heparin-functionalized nanocapsules: Enabling targeted delivery of antimalarial drugs Future Medicinal Chemistry 5, (7), 737-739

Castangia, I., Manca, M. L., Matricardi, P., Sinico, C., Lampis, S., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2013). Effect of diclofenac and glycol intercalation on structural assembly of phospholipid lamellar vesicles International Journal of Pharmaceutics 456, (1), 1-9

The aim of the current study was to improve the knowledge of drug-glycol-phospholipid-interactions and their effects in lamellar vesicle suitability as drug delivery systems. Liposomes were prepared using hydrogenated soy phosphatidylcholine (P90H, 60. mg/ml) and diclofenac sodium salt at two concentrations (5-10. mg/ml). To obtain innovative vesicles two permeation enhancers with glycol group, diethyleneglycol monoethyl ether and propylene glycol, were added to the water phase at different ratios (5%, 10%, and 20%).Vesicle organization was deeply investigated by physico-chemical characterization, including differential scanning calorimetry and small-angle diffraction signal analysis while macroscopic structure behavior was evaluated by rheological studies. Results evidenced that the presence of the penetration enhancer and diclofenac sodium salt led to structural rearrangements within and among vesicles forming a tridimensional and complex architecture in which vesicles were closely packed and interconnected. This new design allowed a change in the physical state of dispersions that became highly viscous liquid or soft-solid-like, thus forming an ideal system for topical application able of both adhering to the skin and delivering the drug.

JTD


Pujol, A., Riera, C., Fisa, R., Molina, I., Salvador, F., Estelrich, J., Urbán, P., Fernàndez-Busquets, X., (2013). Nanomedicine for infectious diseases: Application of quantum dots encapsulated in immunoliposomes to the study of targeted drug delivery against leishmaniasis and malaria Proceedings of the 4th International Conference on Nanotechnology: Fundamentals and Applications. 4th International Conference on Nanotechnology: Fundamentals and Applications , International ASET Inc. (Ontario, Canada) , 1-8

Nanotechnological devices for therapeutic applications are massively addressed to diseases prevalent in the developed world, particularly cancer, because of the wrong assumption (for both ethical and technical reasons) that nanomedicines are too expensive and thus they can not be applied to diseases of poverty. Here we have applied quantum dots to study at the cellular level the delivery of the contents of immunoliposomes to erythrocytes infected by the malaria parasite Plasmodium falciparum, and to macrophages infected by the leishmaniasis causative agent Leishmania infantum. A number of works have reported on the encapsulation in liposomes of drugs against both diseases as a strategy to increase therapeutic efficacy and decrease unspecific toxicity. Liposome-carried drugs end up inside Plasmodium-infected red blood cells (pRBCs) and in the phagolysosome system of Leishmania-infected macrophages but some knowledge gaps still obscure subcellular events related to these processes. As a proof of concept, we have used confocal fluorescence microscopy to follow the fate in pRBCs and L. infantum-infected macrophages of quantum dots encapsulated in liposomes, and of lysosomes, Leishmania and Plasmodium parasites, nuclei, and phagosomes. Our data indicate that liposomes merge their lipid bilayers with pRBC plasma membranes but are engulfed by macrophages, where they fuse with lysosomes. Lysosomes have not been observed to join with phagosomes harboring single L. infantum parasites, whereas in phagosomes where the parasite has divided there is lysosome-specific fluorescence with a concomitant disappearance of lysosomes from the cytosol. In later stages, all the lysosome-specific label is found inside phagosomes whereas the phagosomal marker cadaverine strongly stains the macrophage nucleus, suggesting that L. infantum infection induces in its later stages nuclear degeneration and possibly, apoptosis of the host cell. These results indicate that induction of macrophage apoptosis should be explored as a possible strategy used by L. infantum to prepare its egress.

JTD Keywords: Leishmania infantum, Leishmaniasis, Liposomes, Malaria, Nanomedicine, Nanotechnology, Plasmodium falciparum, Quantum dots


Mir, Mònica , Tahirbegi, Islam Bogachan , Valle-Delgado, Juan José , Fernàndez-Busquets, X., Samitier, Josep , (2012). In vitro study of magnetite-amyloid β complex formation Nanomedicine: Nanotechnology, Biology, and Medicine 8, (6), 974-980

Biogenic magnetite (Fe3O4) has been identified in human brain tissue. However, abnormal concentration of magnetite nanoparticles in the brain has been observed in different neurodegenerative pathologies. In the case of Alzheimer's disease (AD), these magnetic nanoparticles have been identified attached to the characteristic brain plaques, which are mainly formed by fibrils of amyloid β peptide (Aβ). However, few clues about the formation of the magnetite-Aβ complex have been reported. We have investigated the interaction between these important players in the AD with superconducting quantum interference, scanning electron microscope, surface plasmon resonance, and magnetic force microscopy. The results support the notion that the magnetite-Aβ complex is created before the synthesis of the magnetic nanoparticles, bringing a highly stable interaction of this couple.

JTD Keywords: Alzheimer's disease, Biogenic magnetite, Amyloid β peptide (Aβ), Superconducting quantum interference, Scanning electron microscope, Surface plasmon resonance, Magnetic force microscopy


Valle-Delgado, J. J., Liepina, I., Lapidus, D., Sabaté, R., Ventura, S., Samitier, J., Fernàndez-Busquets, X., (2012). Self-assembly of human amylin-derived peptides studied by atomic force microscopy and single molecule force spectroscopy Soft Matter 8, (4), 1234-1242

The self-assembly of peptides and proteins into amyloid fibrils of nanometric thickness and up to several micrometres in length, a phenomenon widely observed in biological systems, has recently aroused a growing interest in nanotechnology and nanomedicine. Here we have applied atomic force microscopy and single molecule force spectroscopy to study the amyloidogenesis of a peptide derived from human amylin and of its reverse sequence. The spontaneous formation of protofibrils and their orientation along well-defined directions on graphite and DMSO-coated graphite substrates make the studied peptides interesting candidates for nanotechnological applications. The measured binding forces between peptides correlate with the number of hydrogen bonds between individual peptides inside the fibril structure according to molecular dynamics simulations.

JTD Keywords: Amyloid fibril, Amyloidogenesis, Binding forces, Fibril structure, Graphite substrate, Molecular dynamics simulations, Nanometrics, Protofibrils, Single molecule force spectroscopy, Spontaneous formation, Atomic force microscopy, Atomic spectroscopy, Graphite, Hydrogen bonds, Medical nanotechnology, Molecular dynamics, Molecular physics, Self assembly, Thickness measurement, Peptides


Villar-Pique, A., De Groot, N. S., Sabaté, R., Acebrón, S. P., Celaya, G., Fernàndez-Busquets, X., Muga, A., Ventura, S., (2012). The effect of amyloidogenic peptides on bacterial aging correlates with their intrinsic aggregation propensity Journal of Molecular Biology , 421, (2-3), 270-281

The formation of aggregates by misfolded proteins is thought to be inherently toxic, affecting cell fitness. This observation has led to the suggestion that selection against protein aggregation might be a major constraint on protein evolution. The precise fitness cost associated with protein aggregation has been traditionally difficult to evaluate. Moreover, it is not known if the detrimental effect of aggregates on cell physiology is generic or depends on the specific structural features of the protein deposit. In bacteria, the accumulation of intracellular protein aggregates reduces cell reproductive ability, promoting cellular aging. Here, we exploit the cell division defects promoted by the intracellular aggregation of Alzheimer's-disease-related amyloid β peptide in bacteria to demonstrate that the fitness cost associated with protein misfolding and aggregation is connected to the protein sequence, which controls both the in vivo aggregation rates and the conformational properties of the aggregates. We also show that the deleterious impact of protein aggregation on bacterial division can be buffered by molecular chaperones, likely broadening the sequential space on which natural selection can act. Overall, the results in the present work have potential implications for the evolution of proteins and provide a robust system to experimentally model and quantify the impact of protein aggregation on cell fitness.

JTD Keywords: Amyloid fibrils, Chaperones, Escherichia coli, Inclusion bodies, Protein aggregation


Urban, P., Valle-Delgado, J. J., Moles, E., Marques, J., Diez, C., Fernàndez-Busquets, X., (2012). Nanotools for the delivery of antimicrobial peptides Current Drug Targets , 13, (9), 1158-1172

Antimicrobial peptide drugs are increasingly attractive therapeutic agents as their roles in physiopathological processes are being unraveled and because the development of recombinant DNA technology has made them economically affordable in large amounts and high purity. However, due to lack of specificity regarding the target cells, difficulty in attaining them, or reduced half-lives, most current administration methods require high doses. On the other hand, reduced specificity of toxic drugs demands low concentrations to minimize undesirable side-effects, thus incurring the risk of having sublethal amounts which favour the appearance of resistant microbial strains. In this scenario, targeted delivery can fulfill the objective of achieving the intake of total quantities sufficiently low to be innocuous for the patient but that locally are high enough to be lethal for the infectious agent. One of the major advances in recent years has been the size reduction of drug carriers that have dimensions in the nanometer scale and thus are much smaller than -and capable of being internalized by- many types of cells. Among the different types of potential antimicrobial peptide-encapsulating structures reviewed here are liposomes, dendritic polymers, solid core nanoparticles, carbon nanotubes, and DNA cages. These nanoparticulate systems can be functionalized with a plethora of biomolecules providing specificity of binding to particular cell types or locations; as examples of these targeting elements we will present antibodies, DNA aptamers, cell-penetrating peptides, and carbohydrates. Multifunctional Trojan horse-like nanovessels can be engineered by choosing the adequate peptide content, encapsulating structure, and targeting moiety for each particular application.

JTD Keywords: Antibodies, Aptamers, Dendrimers, Liposomes, Nanomedicine, Nanoparticles, Nanovectors, Targeting


Urban, Patricia, Estelrich, Joan, Cortés, Alfred, Fernàndez-Busquets, X., (2011). A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum-infected versus non-infected red blood cells in vitro Journal of Controlled Release 151, (2), 202-211

Current administration methods of antimalarial drugs deliver the free compound in the blood stream, where it can be unspecifically taken up by all cells, and not only by Plasmodium-infected red blood cells (pRBCs). Nanosized carriers have been receiving special attention with the aim of minimizing the side effects of malaria therapy by increasing drug bioavailability and selectivity. Liposome encapsulation has been assayed for the delivery of compounds against murine malaria, but there is a lack of cellular studies on the performance of targeted liposomes in specific cell recognition and on the efficacy of cargo delivery, and very little data on liposome-driven antimalarial drug targeting to human-infecting parasites. We have used fluorescence microscopy to assess in vitro the efficiency of liposomal nanocarriers for the targeted delivery of their contents to pRBCs. 200-nm liposomes loaded with quantum dots were covalently functionalized with oriented, specific half-antibodies against P. falciparum late form-infected pRBCs. In less than 90 min, liposomes dock to pRBC plasma membranes and release their cargo to the cell. 100.0% of late form-containing pRBCs and 0.0% of non-infected RBCs in P. falciparum cultures are recognized and permeated by the content of targeted immunoliposomes. Liposomes not functionalized with antibodies are also specifically directed to pRBCs, although with less affinity than immunoliposomes. In preliminary assays, the antimalarial drug chloroquine at a concentration of 2 nM, >= 10 times below its IC50 in solution, cleared 26.7 ± 1.8% of pRBCs when delivered inside targeted immunoliposomes.

JTD Keywords: Antimalarial chemotherapy, Chloroquine, Half-antibodies, Immunoliposomes, Malaria, Nanomedicine


Urban, Patricia, Estelrich, Joan, Adeva, Alberto, Cortes, Alfred, Fernàndez-Busquets, X., (2011). Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors Nanoscale Research Letters 6, (1), 620

Paul Ehrlich's dream of a 'magic bullet' that would specifically destroy invading microbes is now a major aspect of clinical medicine. However, a century later, the implementation of this medical holy grail continues being a challenge in three main fronts: identifying the right molecular or cellular targets for a particular disease, having a drug that is effective against it, and finding a strategy for the efficient delivery of sufficient amounts of the drug in an active state exclusively to the selected targets. In a previous work, we engineered an immunoliposomal nanovector for the targeted delivery of its contents exclusively to Plasmodium falciparum-infected red blood cells [pRBCs]. In preliminary assays, the antimalarial drug chloroquine showed improved efficacy when delivered inside immunoliposomes targeted with the pRBC-specific monoclonal antibody BM1234. Because difficulties in determining the exact concentration of the drug due to its low amounts prevented an accurate estimation of the nanovector performance, here, we have developed an HPLC-based method for the precise determination of the concentrations in the liposomal preparations of chloroquine and of a second antimalarial drug, fosmidomycin. The results obtained indicate that immunoliposome encapsulation of chloroquine and fosmidomycin improves by tenfold the efficacy of antimalarial drugs. The targeting antibody used binds preferentially to pRBCs containing late maturation stages of the parasite. In accordance with this observation, the best performing immunoliposomes are those added to Plasmodium cultures having a larger number of late form-containing pRBCs. An average of five antibody molecules per liposome significantly improves in cell cultures the performance of immunoliposomes over non-functionalized liposomes as drug delivery vessels. Increasing the number of antibodies on the liposome surface correspondingly increases performance, with a reduction of 50% parasitemia achieved with immunoliposomes encapsulating 4 nM chloroquine and bearing an estimated 250 BM1234 units. The nanovector prototype described here can be a valuable platform amenable to modification and improvement with the objective of designing a nanostructure adequate to enter the preclinical pipeline as a new antimalarial therapy.

JTD Keywords: Plasmodium falciparum, Antimalarial drug, Nanovector, Immuno-liposomes


Valle-Delgado, J. J., Alfonso-Prieto, M., de Groot, N. S., Ventura, S., Samitier, J., Rovira, C., Fernàndez-Busquets, X., (2010). Modulation of A beta(42) fibrillogenesis by glycosaminoglycan structure FASEB Journal , 24, (11), 4250-4261

The role of amyloid beta (A beta) peptide in the onset and progression of Alzheimer's disease is linked to the presence of soluble A beta species. Sulfated glycosaminoglycans (GAGs) promote A beta fibrillogenesis and reduce the toxicity of the peptide in neuronal cell cultures, but a satisfactory rationale to explain these effects at the molecular level has not been provided yet. We have used circular dichroism, Fourier transform infrared spectroscopy, fluorescence microscopy and spectroscopy, protease digestion, atomic force microscopy (AFM), and molecular dynamics simulations to characterize the association of the 42-residue fragment A beta(42) with sulfated GAGs, hyaluronan, chitosan, and poly(vinyl sulfate) (PVS). Our results indicate that the formation of stable A beta(42) fibrils is promoted by polymeric GAGs with negative charges placed in-frame with the 4.8-angstrom separating A beta(42) monomers within protofibrillar beta-sheets. Incubation of A beta(42) with excess sulfated GAGs and hyaluronan increased amyloid fibril content and resistance to proteolysis 2- to 5-fold, whereas in the presence of the cationic polysaccharide chitosan, A beta(42) fibrillar species were reduced by 25% and sensitivity to protease degradation increased similar to 3-fold. Fibrils of intermediate stability were obtained in the presence of PVS, an anionic polymer with more tightly packed charges than GAGs. Important structural differences between A beta(42) fibrils induced by PVS and A beta(42) fibrils obtained in the presence of GAGs and hyaluronan were observed by AFM, whereas mainly precursor protofibrillar forms were detected after incubation with chitosan. Computed binding energies per peptide from -11.2 to -13.5 kcal/mol were calculated for GAGs and PVS, whereas a significantly lower value of -7.4 kcal/mol was obtained for chitosan. Taken together, our data suggest a simple and straightforward mechanism to explain the role of GAGs as enhancers of the formation of insoluble A beta(42) fibrils trapping soluble toxic forms.

JTD Keywords: Alzheimer's disease, Amyloid fibril structure, Fibrillogenesis enhancers and inhibitors, Polysaccharides


Sisquella, X., de Pourcq, K., Alguacil, J., Robles, J., Sanz, F., Anselmetti, D., Imperial, S., Fernàndez-Busquets, X., (2010). A single-molecule force spectroscopy nanosensor for the identification of new antibiotics and antimalarials FASEB Journal , 24, (11), 4203-4217

An important goal of nanotechnology is the application of individual molecule handling techniques to the discovery of potential new therapeutic agents. Of particular interest is the search for new inhibitors of metabolic routes exclusive of human pathogens, such as the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway essential for the viability of most human pathogenic bacteria and of the malaria parasite. Using atomic force microscopy single-molecule force spectroscopy (SMFS), we have probed at the single-molecule level the interaction of 1-deoxy-D-xylulose 5-phosphate synthase (DXS), which catalyzes the first step of the MEP pathway, with its two substrates, pyruvate and glyceraldehyde-3-phosphate. The data obtained in this pioneering SMFS analysis of a bisubstrate enzymatic reaction illustrate the substrate sequentiality in DXS activity and allow for the calculation of catalytic parameters with single-molecule resolution. The DXS inhibitor fluoropyruvate has been detected in our SMFS competition experiments at a concentration of 10 mu M, improving by 2 orders of magnitude the sensitivity of conventional enzyme activity assays. The binding of DXS to pyruvate is a 2-step process with dissociation constants of k(off) = 6.1 x 10(-4) +/- 7.5 x 10(-3) and 1.3 x 10(-2) +/- 1.0 x 10(-2) s(-1), and reaction lengths of x(beta) = 3.98 +/- 0.33 and 0.52 +/- 0.23 angstrom. These results constitute the first quantitative report on the use of nanotechnology for the biodiscovery of new antimalarial enzyme inhibitors and open the field for the identification of compounds represented only by a few dozens of molecules in the sensor chamber.

JTD Keywords: Malaria, 2-C-methyl-D-erythritol-4-phosphate pathway, 1-deoxy-D-xylulose 5-phosphate synthase, Pyruvate, Glyceraldehyde-3-phosphate, Drug discovery


Valente, T., Gella, A., Fernàndez-Busquets, X., Unzeta, M., Durany, N., (2010). Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer's disease and diabetes mellitus Neurobiology of Disease , 37, (1), 67-76

It has been extensively reported that diabetes mellitus (DM) patients have a higher risk of developing Alzheimer's disease (AD). but a mechanistic connection between both pathologies has not been provided so far Carbohydrate-derived advanced glycation endproducts (AGEs) have been implicated in the chronic complications of DM and have been reported to play an important role in the pathogenesis of AD. The earliest histopathological manifestation of AD is the apparition of extracellular aggregates of the amyloid beta peptide (A beta). To investigate possible correlations between AGEs and A beta aggregates with both pathologies. we have performed an immuhistochemical study in human post-mortem samples of AD, AD with diabetes (ADD). diabetic and nondemented controls ADD brains showed increased number of A beta dense plaques and receptor for AGEs (RACE)-positive and Tau-positive cells, higher AGEs levels and major microglial activation, compared to AD brain. Our results indicate that ADD patients present a significant increase of cell damage through a RAGE-dependent mechanism, suggesting that AGEs may promote the generation of an oxidative stress vicious cycle, which can explain the severe progression of patients with both pathologies.

JTD Keywords: Abeta, Alzheimer's disease, Rage, Ages, Diabetes, Immunohistochemistry, Advanced glycation endproducts, Beta-amyloid peptide, End-products, Oxidative stress, Advanced glycosylation, Synaptic dysfunction, Cross-linking


Fernàndez-Busquets, X., Ponce, J., Bravo, R., Arimon, M., Martianez, T., Gella, A., Cladera, J., Durany, N., (2010). Modulation of amyloid beta peptide(1-42) cytotoxicity and aggregation in vitro by glucose and chondroitin sulfate Current Alzheimer Research , 7, (5), 428-438

One mechanism leading to neurodegeneration during Alzheimer's Disease (AD) is amyloid beta peptide (A beta)-induced neurotoxicity. Among the factors proposed to potentiate A beta toxicity is its covalent modification through carbohydrate-derived advanced glycation endproducts (AGEs). Other experimental evidence, though, indicates that certain polymeric carbohydrates like the glycosaminoglycan (GAG) chains found in proteoglycan molecules attenuate the neurotoxic effect of A beta in primary neuronal cultures. Pretreatment of the 42-residue A beta fragment (A beta(1-42)) with the ubiquitous brain carbohydrates, glucose, fructose, and the GAG chondroitin sulfate B (CSB) inhibits A beta beta(1-42)-induced apoptosis and reduces the peptide neurotoxicity on neuroblastoma cells, a cytoprotective effect that is partially reverted by AGE inhibitors such as pyridoxamine and L-carnosine. Thioflavin T fluorescence measurements indicate that at concentrations close to physiological, only CSB promotes the formation of A beta amyloid fibril structure. Atomic force microscopy imaging and Western blot analysis suggest that glucose favours the formation of globular oligomeric structures derived from aggregated species. Our data suggest that at short times carbohydrates reduce A beta(1-42) toxicity through different mechanisms both dependent and independent of AGE formation.

JTD Keywords: Alzheimer's disease, Advanced glycation endproducts, Amyloid fibrils, Amyloid beta peptide, Apoptosis, Carbohydrates, Glycosaminoglycans


Gallego, I., Oncins, G., Sisquella, X., Fernàndez-Busquets, X., Daban, J. R., (2010). Nanotribology results show that DNA forms a mechanically resistant 2D network in metaphase chromatin plates Biophysical Journal , 99, (12), 3951-3958

In a previous study, we found that metaphase chromosomes are formed by thin plates, and here we have applied atomic force microscopy (AFM) and friction force measurements at the nanoscale (nanotribology) to analyze the properties of these planar structures in aqueous media at room temperature. Our results show that high concentrations of NaCl and EDTA and extensive digestion with protease and nuclease enzymes cause plate denaturation. Nanotribology studies show that native plates under structuring conditions (5 mM Mg2+) have a relatively high friction coefficient ( ≈ 0.3), which is markedly reduced when high concentrations of NaCl or EDTA are added ( ≈ 0.1). This lubricant effect can be interpreted considering the electrostatic repulsion between DNA phosphate groups and the AFM tip. Protease digestion increases the friction coefficient ( ≈ 0.5), but the highest friction is observed when DNA is cleaved by micrococcal nuclease ( ≈ 0.9), indicating that DNA is the main structural element of plates. Whereas nuclease-digested plates are irreversibly damaged after the friction measurement, native plates can absorb kinetic energy from the AFM tip without suffering any damage. These results suggest that plates are formed by a flexible and mechanically resistant two-dimensional network which allows the safe storage of DNA during mitosis.

JTD Keywords: -----


Harder, A., Walhorn, V., Dierks, T., Fernàndez-Busquets, X., Anselmetti, D., (2010). Single-molecule force spectroscopy of cartilage aggrecan self-adhesion Biophysical Journal , 99, (10), 3498-3504

We investigated self-adhesion between highly negatively charged aggrecan macromolecules extracted from bovine cartilage extracellular matrix by performing atomic force microscopy (AFM) imaging and single-molecule force spectroscopy (SMFS) in saline solutions. By controlling the density of aggrecan molecules on both the gold substrate and the gold-coated tip surface at submonolayer densities, we were able to detect and quantify the Ca2+-dependent homodimeric interaction between individual aggrecan molecules at the single-molecule level. We found a typical nonlinear sawtooth profile in the AFM force-versus-distance curves with a molecular persistence length of I-p = 0.31 +/- 0.04 nm. This is attributed to the stepwise dissociation of individual glycosaminoglycan (GAG) side chains in aggrecans, which is very similar to the known force fingerprints of other cell adhesion proteoglycan systems. After studying the GAG-GAG dissociation in a dynamic, loading-rate-dependent manner (dynamic SMFS) and analyzing the data according to the stochastic Bell-Evans model for a thermally activated decay of a metastable state under an external force, we estimated for the single glycan interaction a mean lifetime of tau = 7.9 +/- 4.9 s and a reaction bond length of x(beta) = 0.31 +/- 0.08 nm. Whereas the x(beta)-value compares well with values from other cell adhesion carbohydrate recognition motifs in evolutionary distant marine sponge proteoglycans, the rather short GAG interaction lifetime reflects high intermolecular dynamics within aggrecan complexes, which may be relevant for the viscoelastic properties of cartilage tissue.

JTD Keywords: Bovine nasal cartilage, Articular-cartilage, Sinorhizobium-meliloti, Proteoglycan, Microscopy, DNA, Macromolecules, Binding, Protein, Glycosaminoglycans


Sabaté, R., Espargaró, A., de Groot, N. S., Valle-Delgado, J. J., Fernàndez-Busquets, X., Ventura, S., (2010). The role of protein sequence and amino acid composition in amyloid formation: Scrambling and backward reading of IAPP amyloid fibrils Journal of Molecular Biology , 404, (2), 337-352

The specific functional structure of natural proteins is determined by the way in which amino acids are sequentially connected in the polypeptide. The tight sequence/structure relationship governing protein folding does not seem to apply to amyloid fibril formation because many proteins without any sequence relationship have been shown to assemble into very similar β-sheet-enriched structures. Here, we have characterized the aggregation kinetics, seeding ability, morphology, conformation, stability, and toxicity of amyloid fibrils formed by a 20-residue domain of the islet amyloid polypeptide (IAPP), as well as of a backward and scrambled version of this peptide. The three IAPP peptides readily aggregate into ordered, β-sheet-enriched, amyloid-like fibrils. However, the mechanism of formation and the structural and functional properties of aggregates formed from these three peptides are different in such a way that they do not cross-seed each other despite sharing a common amino acid composition. The results confirm that, as for globular proteins, highly specific polypeptide sequential traits govern the assembly pathway, final fine structure, and cytotoxic properties of amyloid conformations.

JTD Keywords: Amyloid formation, Islet amyloid polypeptide, Protein aggregation, Protein sequence, Retro proteins


Fernàndez-Busquets, X., Körnig, A., Bucior, I., Burger, M. M., Anselmetti, D., (2009). Self-recognition and Ca2+-dependent carbohydrate-carbohydrate cell adhesion provide clues to the cambrian explosion Molecular Biology and Evolution , 26, (11), 2551-2561

The Cambrian explosion of life was a relatively short period approximately 540 Ma that marked a generalized acceleration in the evolution of most animal phyla, but the trigger of this key biological event remains elusive. Sponges are the oldest extant Precambrian metazoan phylum and thus a valid model to study factors that could have unleashed the rise of multicellular animals. One such factor is the advent of self-/non-self-recognition systems, which would be evolutionarily beneficial to organisms to prevent germ-cell parasitism or the introduction of deleterious mutations resulting from fusion with genetically different individuals. However, the molecules responsible for allorecognition probably evolved gradually before the Cambrian period, and some other (external) factor remains to be identified as the missing triggering event. Sponge cells associate through calcium-dependent, multivalent carbohydrate-carbohydrate interactions of the g200 glycan found on extracellular proteoglycans. Single molecule force spectroscopy analysis of g200-g200 binding indicates that calcium affects the lifetime (+Ca/-Ca: 680 s/3 s) and bond reaction length (+Ca/-Ca: 3.47 /2.27). Calculation of mean g200 dissociation times in low and high calcium within the theoretical framework of a cooperative binding model indicates the nonlinear and divergent characteristics leading to either disaggregated cells or stable multicellular assemblies, respectively. This fundamental phenomenon can explain a switch from weak to strong adhesion between primitive metazoan cells caused by the well-documented rise in ocean calcium levels at the end of Precambrian time. We propose that stronger cell adhesion allowed the integrity of genetically uniform animals composed only of "self" cells, facilitating genetic constitutions to remain within the metazoan individual and be passed down inheritance lines. The Cambrian explosion might have been triggered by the coincidence in time of primitive animals endowed with self-/non-self-recognition and of a surge in seawater calcium that increased the binding forces between their calcium-dependent cell adhesion molecules.

JTD Keywords: Calcium, Cambrian explosion, Carbohydrates, Cell adhesion, Origin of Metazoa, Sponges


Guix, F. X., Ill-Raga, G., Bravo, R., Nakaya, T., de Fabritiis, G., Coma, M., Miscione, G. P., Villa-Freixa, J., Suzuki, T., Fernàndez-Busquets, X., Valverde, M. A., de Strooper, B., Munoz, F. J., (2009). Amyloid-dependent triosephosphate isomerase nitrotyrosination induces glycation and tau fibrillation Brain , 132, (5), 1335-1345

Alzheimer's disease neuropathology is characterized by neuronal death, amyloid beta-peptide deposits and neurofibrillary tangles composed of paired helical filaments of tau protein. Although crucial for our understanding of the pathogenesis of Alzheimer's disease, the molecular mechanisms linking amyloid beta-peptide and paired helical filaments remain unknown. Here, we show that amyloid beta-peptide-induced nitro-oxidative damage promotes the nitrotyrosination of the glycolytic enzyme triosephosphate isomerase in human neuroblastoma cells. Consequently, nitro-triosephosphate isomerase was found to be present in brain slides from double transgenic mice overexpressing human amyloid precursor protein and presenilin 1, and in Alzheimer's disease patients. Higher levels of nitro-triosephosphate isomerase (P < 0.05) were detected, by Western blot, in immunoprecipitates from hippocampus (9 individuals) and frontal cortex (13 individuals) of Alzheimer's disease patients, compared with healthy subjects (4 and 9 individuals, respectively). Triosephosphate isomerase nitrotyrosination decreases the glycolytic flow. Moreover, during its isomerase activity, it triggers the production of the highly neurotoxic methylglyoxal (n = 4; P < 0.05). The bioinformatics simulation of the nitration of tyrosines 164 and 208, close to the catalytic centre, fits with a reduced isomerase activity. Human embryonic kidney (HEK) cells overexpressing double mutant triosephosphate isomerase (Tyr164 and 208 by Phe164 and 208) showed high methylglyoxal production. This finding correlates with the widespread glycation immunostaining in Alzheimer's disease cortex and hippocampus from double transgenic mice overexpressing amyloid precursor protein and presenilin 1. Furthermore, nitro-triosephosphate isomerase formed large beta-sheet aggregates in vitro and in vivo, as demonstrated by turbidometric analysis and electron microscopy. Transmission electron microscopy (TEM) and atomic force microscopy studies have demonstrated that nitro-triosephosphate isomerase binds tau monomers and induces tau aggregation to form paired helical filaments, the characteristic intracellular hallmark of Alzheimer's disease brains. Our results link oxidative stress, the main etiopathogenic mechanism in sporadic Alzheimer's disease, via the production of peroxynitrite and nitrotyrosination of triosephosphate isomerase, to amyloid beta-peptide-induced toxicity and tau pathology.

JTD Keywords: Alzheimer's disease, Amyloid β-peptide, Tau protein, Triosephosphate isomerase, Peroxynitrite


Pla, D., Sischka, A., Albericio, F., Alvarez, M., Fernàndez-Busquets, X., Anselmetti, D., (2009). Optical-tweezers study of topoisomerase inhibition Small 5, (11), 1269-1272

Optical tweezers force-stretching of highly nicked dsDNA, as indicated by the large hysteresis area (black and red curves). Topoisomerase activity is evidenced by a higher level plateau and a complete vanishing of the overstretching hysteresis (green curve), indicating total repair of the DNA nicks. The arrow indicates a drop in the stretching curve resulting from topoisomerase cleavage during the cycle.

JTD Keywords: Atomic force microscopy, DNA, Lamellarin D, Optical tweezers, Topoisomerase


Gimenez-Oya, V., Villacanas, O., Fernàndez-Busquets, X., Rubio-Martinez, J., Imperial, S., (2009). Mimicking direct protein-protein and solvent-mediated interactions in the CDP-methylerythritol kinase homodimer: a pharmacophore-directed virtual screening approach Journal of Molecular Modeling , 15, (8), 997-1007

The 2C-methylerythritol 4-phosphate (MEP) pathway for the biosynthesis of isopentenyl pyrophosphate and its isomer dimethylallyl pyrophosphate, which are the precursors of isoprenoids, is present in plants, in the malaria parasite Plasmodium falciparum and in most eubacteria, including pathogenic agents. However, the MEP pathway is absent from fungi and animals, which have exclusively the mevalonic acid pathway. Given the characteristics of the MEP pathway, its enzymes represent potential targets for the generation of selective antibacterial, antimalarial and herbicidal molecules. We have focussed on the enzyme 4-(cytidine 5'-diphospho)-2-C-methyl-D: -erythritol kinase (CMK), which catalyses the fourth reaction step of the MEP pathway. A molecular dynamics simulation was carried out on the CMK dimer complex, and protein-protein interactions analysed, considering also water-mediated interactions between monomers. In order to find small molecules that bind to CMK and disrupt dimer formation, interactions observed in the dynamics trajectory were used to model a pharmacophore used in database searches. Using an intensity-fading matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry approach, one compound was found to interact with CMK. The data presented here indicate that a virtual screening approach can be used to identify candidate molecules that disrupt the CMK-CMK complex. This strategy can contribute to speeding up the discovery of new antimalarial, antibacterial, and herbicidal compounds.

JTD Keywords: Solvent-mediated interactions, Protein-protein interactions, Molecular dynamics, Drug design, Intensisty-fading MALDI-TOF mass spectrometry


Rodriguez-Segui, S. A., Bucior, I., Burger, M. M., Errachid, A., Fernàndez-Busquets, X., (2009). Application of the quartz crystal microbalance to the study of multivalent carbohydrate-carbohydrate adhesion Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 782-787

Carbohydrate-carbohydrate interactions in cell adhesion are being increasingly explored as important players in cell-cell and cell-extracellular matrix interactions that are characterized by finelytuned on-off rates. The emerging field of glycomics requires the application of new methodologies to the study of the generally weak and multivalent carbohydrate binding sites. Here we use the quartz crystal microbalance (QCM) for the analysis of the self-binding activity of the g200 glycan, a molecule of marine sponge origin that is responsible for Ca2+-dependent species-specific cell adhesion. The QCM has the advantages over other highly sensitive techniques of having only one of the interacting partners bound to a surface, and of lacking microfluidics circuits prone to be clogged by self-aggregating glycans. Our results show that g200 self-interaction is negligible in the absence of Ca2+. Different association kinetics at low and high Ca2+ concentrations suggest the existence of two different Ca2+ binding sites in g200. Finally, the observation of a non-saturable binding indicates that g200 has more than one self-adhesion site per molecule. This work represents the first report to date using the QCM to study carbohydrate-carbohydrate interactions involved in cell adhesion.

JTD Keywords: Ca2+-dependent binding, Carbohydrate-carbohydrate interaction, Cell adhesion, Proteoglycan, Quartz crystal microbalance, Sponges


Bravo, R., Arimon, M., Valle-Delgado, J. J., Garcia, R., Durany, N., Castel, S., Cruz, M., Ventura, S., Fernàndez-Busquets, X., (2008). Sulfated polysaccharides promote the assembly of amyloid beta(1-42) peptide into stable fibrils of reduced cytotoxicity Journal of Biological Chemistry , 283, (47), 32471-32483

The histopathological hallmarks of Alzheimer disease are the self-aggregation of the amyloid beta peptide (A beta) in extracellular amyloid fibrils and the formation of intraneuronal Tau filaments, but a convincing mechanism connecting both processes has yet to be provided. Here we show that the endogenous polysaccharide chondroitin sulfate B (CSB) promotes the formation of fibrillar structures of the 42-residue fragment, A beta(1-42). Atomic force microscopy visualization, thioflavin T fluorescence, CD measurements, and cell viability assays indicate that CSB-induced fibrils are highly stable entities with abundant beta-sheet structure that have little toxicity for neuroblastoma cells. We propose a wedged cylinder model for A beta(1-42) fibrils that is consistent with the majority of available data, it is an energetically favorable assembly that minimizes the exposure of hydrophobic areas, and it explains why fibrils do not grow in thickness. Fluorescence measurements of the effect of different A beta(1-42) species on Ca2+ homeostasis show that weakly structured nodular fibrils, but not CSB-induced smooth fibrils, trigger a rise in cytosolic Ca2+ that depends on the presence of both extracellular and intracellular stocks. In vitro assays indicate that such transient, local Ca2+ increases can have a direct effect in promoting the formation of Tau filaments similar to those isolated from Alzheimer disease brains.

JTD Keywords: AFM, Alzheimers-disease, Chondroitin sulfate, Heparan-sulfate, Lipid-bilayers, Beta-peptide, In-vitro, Neurodegenerative diseases, Extracellular-matrix, Prion protein


Morell, M., Bravo, R., Espargaro, A., Sisquella, X., Aviles, F. X., Fernàndez-Busquets, X., Ventura, S., (2008). Inclusion bodies: Specificity in their aggregation process and amyloid-like structure Biochimica et Biophysica Acta - Molecular Cell Research , 1783, (10), 1815-1825

The accumulation of aggregated protein in the cell is associated with the pathology of many diseases and constitutes a major concern in protein production. Intracellular aggregates have been traditionally regarded as nonspecific associations of misfolded polypeptides. This view is challenged by studies demonstrating that, in vitro, aggregation often involves specific interactions. However, little is known about the specificity of in vivo protein deposition. Here, we investigate the degree of in vivo co-aggregation between two self-aggregating proteins, A beta A2 amyloid peptide and foot-and-mouth disease virus VP1 capsid protein, in prokaryotic cells. In addition, the ultrastructure of intracellular aggregates is explored to decipher whether amyloid fibrils and intracellular protein inclusions share structural properties. The data indicate that in vivo protein aggregation exhibits a remarkable specificity that depends on the establishment of selective interactions and results in the formation of oligomeric and fibrillar structures displaying amyloid-like properties. These features allow prokaryotic A beta A2 intracellular aggregates to act as effective seeds in the formation of A beta A2 amyloid fibrils. overall, our results suggest that conserved mechanisms underlie protein aggregation in different organisms. They also have important implications for biotechnological and biomedical applications of recombinant polypeptides.

JTD Keywords: Protein aggregation, Inclusion bodies, Conformational diseases, Amyloid fibrils, Protein folding


Sabella, C., Faszewski, E., Himic, L., Colpitts, K. M., Kaltenbach, J., Burger, M. M., Fernàndez-Busquets, X., (2007). Cyclosporin A suspends transplantation reactions in the marine sponge Microciona prolifera Journal of Immunology , 179, (9), 5927-5935

Sponges are the simplest extant animals but nevertheless possess self-nonself recognition that rivals the specificity of the vertebrate MHC. We have used dissociated cell assays and grafting techniques to study tissue acceptance and rejection in the marine sponge Microciona prolifera. Our data show that allogeneic, but not isogeneic, cell contacts trigger cell death and an increased expression of cell adhesion and apoptosis markers in cells that accumulate in graft interfaces. Experiments investigating the possible existence of immune memory in sponges indicate that faster second set reactions are nonspecific. Among the different cellular types, gray cells have been proposed to be the sponge immunocytes. Fluorescence confocal microscopy results from intact live grafts show the migration of autofluorescent gray cells toward graft contact zones and the inhibition of gray cell movements in the presence of nontoxic concentrations of cyclosporin A. These results suggest that cell motility is an important factor involved in sponge self/nonself recognition. Communication between gray cells in grafted tissues does not require cell contact and is carried by an extracellular diffusible marker. The finding that a commonly used immunosuppressor in human transplantation such as cyclosporin A blocks tissue rejection in marine sponges indicates that the cellular mechanisms for regulating this process in vertebrates might have appeared at the very start of metazoan evolution.

JTD


Rodriguez, Segui, Bucior, I., Burger, M. M., Samitier, J., Errachid, A., Fernàndez-Busquets, X., (2007). Application of a bio-QCM to study carbohydrates self-interaction in presence of calcium Transducers '07 & Eurosensors Xxi, Digest of Technical Papers 14th International Conference on Solid-State Sensors, Actuators and Microsystems , IEEE (Lyon, France) 1-2, 1995-1998

In the past years, the quartz crystal microbalance (QCM) has been successfully applied to follow interfacial physical chemistry phenomena in a label free and real time manner. However, carbohydrate self adhesion has only been addressed partially using this technique. Carbohydrates play an important role in cell adhesion, providing a highly versatile form of attachment, suitable for biologically relevant recognition events in the initial steps of adhesion. Here, we provide a QCM study of carbohydrates' self-recognition in the presence of calcium, based on a species-specific cell recognition model provided by marine sponges. Our results show a difference in adhesion kinetics when varying either the calcium concentration (with a constant carbohydrate concentration) or the carbohydrate concentration (with constant calcium concentration).

JTD Keywords: Biomedical materials, Calcium, Cellular biophysics, Microbalances, Porous materials, Quartz, Surface chemistry/ bio-QCM, Carbohydrates self-interaction, Quartz crystal microbalance, Interfacial physical chemistry phenomena, Carbohydrate self adhesion, Biologically relevant recognition events, Marine sponges, Adhesion kinetics, Calcium concentration, Carbohydrate concentration, Biosensors, Biomedical materials, Surface chemistry, Cellular biophysics