Staff member

Lucas Santiago Palacios Ruiz

PhD Student
Smart Nano-Bio-Devices
+34 934 020 291
Staff member publications

Palacios, L. S., Katuri, J., Pagonabarraga, I., Sánchez, S., (2019). Guidance of active particles at liquid-liquid interfaces near surfaces Soft Matter 15, (32), 6581-6588

Artificial microswimmers have the potential for applications in many fields, ranging from targeted cargo delivery and mobile sensing to environmental remediation. In many of these applications, the artificial swimmers will operate in complex media necessarily involving liquid–liquid interfaces. Here, we experimentally study the motion of chemically powered phoretic active colloids close to liquid–liquid interfaces while swimming next to a solid substrate. In a system involving this complex geometry, we find that the active particles have an alignment interaction with both the neighbouring solid and liquid interfaces, allowing for a robust guiding mechanism along the liquid interface. We compare with minimal active Brownian simulations to show that these phoretically active particles stay along the interfaces for much longer times and lengths than expected for standard active Brownian particles. We also track the propulsion speeds of these particles and find a reduced speed close to the liquid–liquid interface. We report an interesting non-linear dependence of this reduction on the particle's bulk speed..

Caballero, D., Palacios, L., Freitas, P. P., Samitier, J., (2017). An interplay between matrix anisotropy and actomyosin contractility regulates 3D-directed cell migration Advanced Functional Materials 27, (35), 1702322

Directed cell migration is essential for many biological processes, such as embryonic development or cancer progression. Cell contractility and adhesion to the extracellular matrix are known to regulate cell locomotion machinery. However, the cross-talk between extrinsic and intrinsic factors at the molecular level on the biophysical mechanism of three dimensional (3D)-directed cell migration is still unclear. In this work, a novel physiologically relevant in vitro model of the extracellular microenvironment is used to reveal how the topological anisotropy of the extracellular matrix synergizes with actomyosin contractility to modulate directional cell migration morphodynamics. This study shows that cells seeded on polarized 3D matrices display asymmetric protrusion morphodynamics and in-vivo-like phenotypes. It is found that matrix anisotropy significantly enhances cell directionality, but strikingly, not the invasion distance of cells. In Rho-inhibited cells, matrix anisotropy counteracts the lack of actomyosin-driven forces to stabilize cell directionality suggesting a myosin-II-independent mechanism for cell guidance. Finally, this study shows that on isotropic 3D environments, cell directionality is independent of actomyosin contractility. Altogether, this study provides novel quantitative data on the biomechanical regulation of directional cell motion and shows the important regulatory role of matrix anisotropy and actomyosin forces to guide cell migration in 3D microenvironments.

Keywords: Anisotropy, Directed cell migration, Extracellular matrices, Migration modes, Three dimensional microenvironments