Staff member

Ferran Velasco Mallorquí

PhD Student
Biosensors for bioengineering
+34 934 039 735
Staff member publications

Velasco, Ferran, Fernandez-Costa, Juan M., Neves, Luisa, Ramon Azcon, Javier, (2020). Volumetric CNT-doped Gelatin-Cellulose scaffold for skeletal muscle tissue engineering Nanoscale Advances ahead,

Currently, the fabrication of scaffolds for engineered skeletal muscle tissue is unable to reach the millimeter size. The main drawbacks are the poor nutrients diffusion, lack of internal structure to align precursor cells as well as poor mechanical and electric properties. Herein, we present a combination of gelatin-carboxymethyl cellulose materials polymerised by a cryogelation process that allowed us to reach scaffold fabrication up to millimeters size and solve the main problems related with large size muscle tissue constructs. 1) By incorporating carbon nanotubes (CNT) we can improve the electrical properties of the scaffold, thereby enhancing tissue maturation when applying an electric pulse stimulus (EPS). 2) We have fabricated an anisotropic internal three-dimensional microarchitecture pore distribution with high aligned morphology to enhance cells alignment, cell fusion and myotubes formation. With this set up, we were able to generate a fully functional skeletal muscle tissue using a combination of EPS and our doped-biocomposite scaffold and obtain a mature tissue in a millimeter scale. We also characterized pore distribution, swelling, stiffness and conductivity of the scaffold. Moreover, we proved that the cells are viable and able to fuse in a three-dimensional (3D) functional myotubes throughout the scaffold. In conclusion, we fabricate a biocompatible and customizable scaffold for 3D cell culture suitable for a wide range of application such as organ-on-a-chip, drug screening, transplantation and disease modelling.

Hoyos-Nogués, M., Velasco, F., Ginebra, M. P., Manero, J. M., Gil, F. J., Mas-Moruno, C., (2017). Regenerating bone via multifunctional coatings: The blending of cell integration and bacterial inhibition properties on the surface of biomaterials ACS Applied Materials & Interfaces 9, (26), 21618-21630

In dentistry and orthopedics, it is well accepted that implant fixation is a major goal. However, an emerging concern is bacterial infection. Infection of metallic implants can be catastrophic and significantly reduce patient quality of life. Accordingly, in this work, we focus on multifunctional coatings to simultaneously address and mitigate both these problems. We have developed a tailor-made peptide-based chemical platform that integrates the well-known RGD cell adhesive sequence and the lactoferrin-derived LF1-11 antimicrobial peptide. The platform was covalently grafted on titanium via silanization and the functionalization process characterized by contact angle, XPS, and QCM-D. The presence of the platform statistically improved the adhesion, proliferation and mineralization of osteoblast-like cells compared to control surfaces. At the same time, colonization by representative bacterial strains was significantly reduced on the surfaces. Furthermore, the biological potency of the multifunctional platform was verified in a co-culture in vitro model. Our findings demonstrate that this multifunctional approach can be useful to functionalize biomaterials to both improve cell integration and reduce the risk of bacterial infection.

Keywords: Antimicrobial peptides, Cell adhesive peptides, Multifunctionality, Osseointegration, Surface functionalization