Publications

by Keyword: Computer architecture


By year:[ 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Moulin-Frier, C., Fischer, T., Petit, M., Pointeau, G., Puigbo, J., Pattacini, U., Low, S. C., Camilleri, D., Nguyen, P., Hoffmann, M., Chang, H. J., Zambelli, M., Mealier, A., Damianou, A., Metta, G., Prescott, T. J., Demiris, Y., Dominey, P. F., Verschure, P. F. M. J., (2018). DAC-h3: A proactive robot cognitive architecture to acquire and express knowledge about the world and the self IEEE Transactions on Cognitive and Developmental Systems in press

This paper introduces a cognitive architecture for a humanoid robot to engage in a proactive, mixed-initiative exploration and manipulation of its environment, where the initiative can originate from both the human and the robot. The framework, based on a biologically-grounded theory of the brain and mind, integrates a reactive interaction engine, a number of state-of-the art perceptual and motor learning algorithms, as well as planning abilities and an autobiographical memory. The architecture as a whole drives the robot behavior to solve the symbol grounding problem, acquire language capabilities, execute goal-oriented behavior, and express a verbal narrative of its own experience in the world. We validate our approach in human-robot interaction experiments with the iCub humanoid robot, showing that the proposed cognitive architecture can be applied in real time within a realistic scenario and that it can be used with naive users.

Keywords: Autobiographical Memory., Biology, Cognition, Cognitive Robotics, Computer architecture, Distributed Adaptive Control, Grounding, Human-Robot Interaction, Humanoid robots, Robot sensing systems, Symbol Grounding


Aviles, A. I., Alsaleh, S. M., Sobrevilla, P., Casals, A., (2015). Force-feedback sensory substitution using supervised recurrent learning for robotic-assisted surgery Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 1-4

The lack of force feedback is considered one of the major limitations in Robot Assisted Minimally Invasive Surgeries. Since add-on sensors are not a practical solution for clinical environments, in this paper we present a force estimation approach that starts with the reconstruction of a 3D deformation structure of the tissue surface by minimizing an energy functional. A Recurrent Neural Network-Long Short Term Memory (RNN-LSTM) based architecture is then presented to accurately estimate the applied forces. According to the results, our solution offers long-term stability and shows a significant percentage of accuracy improvement, ranging from about 54% to 78%, over existing approaches.

Keywords: Computer architecture, Estimation, Force, Microprocessors, Robot sensing systems, Surgery