DONATE

Publications

by Keyword: formulations

Valenti, S, Arioli, M, Jamett, A, Tamarit, JL, Puiggalí, J, Macovez, R, (2023). Amorphous solid dispersions of curcumin in a poly(ester amide): Antiplasticizing effect on the glass transition and macromolecular relaxation dynamics, and controlled release International Journal Of Pharmaceutics 644, 123333

In order to exploit the pharmacological potential of natural bioactive molecules with low water solubility, such as curcumin, it is necessary to develop formulations, such as amorphous polymer dispersions, which allow a constant release rate and at the same time avoid possible toxicity effects of the crystalline form of the molecule under scrutiny. In this study, polymer dispersions of curcumin were obtained in PADAS, a biodegradable semicrystalline copolymer based on 1,12-dodecanediol, sebacic acid and alanine. The dispersions were fully characterized by means of differential scanning calorimetry and broadband dielectric spectroscopy, and the drug release profile was measured in a simulated body fluid. Amorphous homogeneous binary dispersions were obtained for curcumin mass fraction between 30 and 50%. Curcumin has significantly higher glass transition temperature Tg (≈ 347 K) than the polymer matrix (≈274-277 K depending on the molecular weight), and dispersions displayed Tg's intermediate between those of the pure amorphous components, implying that curcumin acts as an effective antiplasticizer for PADAS. Dielectric spectroscopy was employed to assess the relaxation dynamics of the binary dispersion with 30 wt% curcumin, as well as that of each (amorphous) component separately. The binary dispersion was characterized by a single structural relaxation, a single Johari-Goldstein process, and two local intramolecular processes, one for each component. Interestingly, the latter processes scaled with the Tg of the sample, indicating that they are viscosity-sensitive. In addition, both the pristine polymer and the dispersion exhibited an interfacial Maxwell-Wagner relaxation, likely due to spatial heterogeneities associated with phase disproportionation in this polymer. The release of curcumin from the dispersion in a simulated body fluid followed a Fickian diffusion profile, and 51% of the initial curcumin content was released in 48 h.Copyright © 2023. Published by Elsevier B.V.

JTD Keywords: antioxidant, bioavailability, dielectric spectroscopy, domain havriliak-negami, glass transition temperature, kinetic stability, molecular mobility, nm pores, phase-behavior, physical stability, release kinetics, temperature, thermodynamic quantities, time, Amorphous formulations, Dielectric spectroscopy, Glass transition temperature, Kinetic stability, Kohlrausch-williams-watts, Molecular mobility, Release kinetics


Fulgheri, F, Aroffu, M, Ramírez, M, Román-Alamo, L, Peris, JE, Usach, I, Nacher, A, Manconi, M, Fernàndez-Busquets, X, Manca, ML, (2023). Curcumin or quercetin loaded nutriosomes as oral adjuvants for malaria infections International Journal Of Pharmaceutics 643, 123195

Artemisinin, curcumin or quercetin, alone or in combination, were loaded in nutriosomes, special phospholipid vesicles enriched with Nutriose FM06®, a soluble dextrin with prebiotic activity, that makes these vesicles suitable for oral delivery. The resulting nutriosomes were sized between 93 and 146 nm, homogeneously dispersed, and had slightly negative zeta potential (around -8 mV). To improve their shelf life and storability over time, vesicle dispersions were freeze-dried and stored at 25 °C. Results confirmed that their main physico-chemical characteristics remained unchanged over a period of 12 months. Additionally, their size and polydispersity index did not undergo any significant variation after dilution with solutions at different pHs (1.2 and 7.0) and high ionic strength, mimicking the harsh conditions of the stomach and intestine. An in vitro study disclosed the delayed release of curcumin and quercetin from nutriosomes (∼53% at 48 h) while artemisinin was quickly released (∼100% at 48 h). Cytotoxicity assays using human colon adenocarcinoma cells (Caco-2) and human umbilical vein endothelial cells (HUVECs) proved the high biocompatibility of the prepared formulations. Finally, in vitro antimalarial activity tests, assessed against the 3D7 strain of Plasmodium falciparum, confirmed the effectiveness of nutriosomes in the delivery of curcumin and quercetin, which can be used as adjuvants in the antimalaria treatment. The efficacy of artemisinin was also confirmed but not improved. Overall results proved the possible use of these formulations as an accompanying treatment of malaria infections.Copyright © 2023. Published by Elsevier B.V.

JTD Keywords: artemisinin, delivery, flavonol, formulations, liposomes, malaria infections, nanomedicine, nutriose (r) fm06, oral administration, plasmodium falciparum, In-vitro, Liposomes, Malaria infections, Nanomedicine, Nutriose® fm06, Oral administration, Plasmodium falciparum