DONATE

Publications

by Keyword: mice

Molina, Brenda G, Fuentes, Judith, Aleman, Carlos, Sanchez, Samuel, (2024). Merging BioActuation and BioCapacitive properties: A 3D bioprinted devices to self-stimulate using self-stored energy Biosensors & Bioelectronics 251, 116117

Biofabrication of three-dimensional (3D) cultures through the 3D Bioprinting technique opens new perspectives and applications of cell-laden hydrogels. However, to continue with the progress, new BioInks with specific properties must be carefully designed. In this study, we report the synthesis and 3D Bioprinting of an electroconductive BioInk made of gelatin/fibrinogen hydrogel, C2C12 mouse myoblast and 5% w/w of conductive poly (3,4-ethylenedioxythiophene) nanoparticles (PEDOT NPs). The influence of PEDOT NPs, incorporated in the cellladen BioInk, not only showed a positive effect in cells viability, differentiation and myotube functionalities, also allowed the printed constructs to behaved as BioCapacitors. Such devices were able to electrochemically store a significant amount of energy (0.5 mF/cm2), enough to self-stimulate as BioActuator, with typical contractions ranging from 27 to 38 mu N, during nearly 50 min. The biofabrication of 3D constructs with the proposed electroconductive BioInk could lead to new devices for tissue engineering, biohybrid robotics or bioelectronics.

JTD Keywords: 3d bioprinting, Animal, Animals, Bioactuator, Bioactuators, Biocapacitor, Biofabrication, Bioprinting, Biosensing techniques, C2c12 myoblasts, Cells, Chemistry, Electric conductivity, Electroconductive, Electroconductive bioink, Ethylenedioxythiophenes, Genetic procedures, Hydrogel, Hydrogels, Mice, Mouse, Pedot nps, Pedot nps,3d bioprinting,electroconductive bioink,bioactuator,biocapacito, Poly (3,4-ethylenedioxythiophene) nanoparticle, Printing, three-dimensional, Procedures, Skeletal-muscle,cytotoxicity,polymer, Synthesis (chemical), Three dimensional printing, Tissue engineering, Tissue scaffolds


Humbert, P, Kampleitner, C, De Lima, J, Brennan, MA, Lodoso-Torrecilla, I, Sadowska, JM, Blanchard, F, Canal, C, Ginebra, MP, Hoffmann, O, Layrolle, P, (2024). Phase composition of calcium phosphate materials affects bone formation by modulating osteoclastogenesis Acta Biomaterialia 176, 417-431

Human mesenchymal stromal cells (hMSCs) seeded on calcium phosphate (CaP) bioceramics are extensively explored in bone tissue engineering and have recently shown effective clinical outcomes. In previous pre-clinical studies, hMSCs-CaP-mediated bone formation was preceded by osteoclastogenesis at the implantation site. The current study evaluates to what extent phase composition of CaPs affects the osteoclast response and ultimately influence bone formation. To this end, four different CaP bioceramics were used, hydroxyapatite (HA), beta-tricalcium phosphate (beta-TCP) and two biphasic composites of HA/beta- TCP ratios of 60/40 and 20/80 respectively, for in vitro osteoclast differentiation and correlation with in vivo osteoclastogenesis and bone formation. All ceramics allowed osteoclast formation in vitro from mouse and human precursors, except for pure HA, which significantly impaired their maturation. Ectopic implantation alongside hMSCs in subcutis sites of nude mice revealed new bone formation at 8 weeks in all conditions with relative amounts for beta-TCP > biphasic CaPs > HA. Surprisingly, while hMSCs were essential for osteoinduction, their survival did not correlate with bone formation. By contrast, the degree of early osteoclastogenesis (2 weeks) seemed to define the extent of subsequent bone formation. Together, our findings suggest that the osteoclastic response could be used as a predictive marker in hMSC-CaPbased bone regeneration and strengthens the need to understand the underlying mechanisms for future biomaterial development. Statement of significance The combination of mesenchymal stromal cells (MSCs) and calcium phosphate (CaP) materials has demonstrated its safety and efficacy for bone regeneration in clinical trials, despite our insufficient understanding of the underlying biological mechanisms. Osteoclasts were previously suggested as key mediators between the early inflammatory phase following biomaterial implantation and the subsequent bone formation. Here we compared the affinity of osteoclasts for various CaP materials with different ratios of hydroxyapatite to beta-tricalcium phosphate. We found that osteoclast formation, both in vitro and at early stages in vivo, correlates with bone formation when the materials were implanted alongside MSCs in mice. Surprisingly, MSC survival did not correlate with bone formation, suggesting that the number or phenotype of osteoclasts formed was more important. (c) 2024 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

JTD Keywords: Acid phosphatase tartrate resistant isoenzyme, Animal, Animal cell, Animal experiment, Animal tissue, Animals, Article, Beta-tricalcium phosphate, Bioceramics, Biocompatible materials, Biomaterial, Bone, Bone development, Bone formation, Bone regeneration, Calcium phosphate, Calcium phosphate materials, Calcium phosphates, Cd14 antigen, Cell differentiation, Cell engineering, Cell maturation, Cell survival, Ceramics, Chemical composition, Controlled study, Correlation analysis, Correlation coefficient, Data correlation, Durapatite, Engraftment, Flowcharting, Human, Human cell, Human mesenchymal stromal cell, Human mesenchymal stromal cells, Humans, Hydroxyapatite, Hydroxyapatites, In vitro study, In vivo study, In-vitro, In-vivo, Mammals, Marrow stromal cells, Material composition, Material compositions, Mesenchymal stroma cell, Mesenchymal stromal cells, Mice, Mice, nude, Monocyte, Mouse, Nonhuman, Nude mouse, Ossification, Osteoclast, Osteoclastogenesis, Osteoclasts, Osteogenesis, Osteoinduction, Phase composition, Regeneration strategies, Resorption, Scaffolds, Stem-cells, Subcutaneous tissue, Tissue engineering, Transmission control protocol, Tri-calcium phosphates, Vimentin


Olea, AR, Jurado, A, Slor, G, Tevet, S, Pujals, S, De La Rosa, VR, Hoogenboom, R, Amir, RJ, Albertazzi, L, (2023). Reaching the Tumor: Mobility of Polymeric Micelles Inside an In Vitro Tumor-on-a-Chip Model with Dual ECM Acs Applied Materials & Interfaces 15, 59134-59144

Degradable polymeric micelles are promising drug delivery systems due to their hydrophobic core and responsive design. When applying micellar nanocarriers for tumor delivery, one of the bottlenecks encountered in vivo is the tumor tissue barrier: crossing the dense mesh of cells and the extracellular matrix (ECM). Sometimes overlooked, the extracellular matrix can trap nanoformulations based on charge, size, and hydrophobicity. Here, we used a simple design of a microfluidic chip with two types of ECM and MCF7 spheroids to allow high-throughput screening of the interactions between biological interfaces and polymeric micelles. To demonstrate the applicability of the chip, a small library of fluorescently labeled polymeric micelles varying in their hydrophilic shell and hydrophobic core forming blocks was studied. Three widely used hydrophilic shells were tested and compared, namely, poly(ethylene glycol), poly(2-ethyl-2-oxazoline), and poly(acrylic acid), along with two enzymatically degradable dendritic hydrophobic cores (based on hexyl or nonyl end groups). Using ratiometric imaging of unimer:micelle fluorescence and FRAP inside the chip model, we obtained the local assembly state and dynamics inside the chip. Notably, we observed different micelle behaviors in the basal lamina ECM, from avoidance of the ECM structure to binding of the poly(acrylic acid) formulations. Binding to the basal lamina correlated with higher uptake into MCF7 spheroids. Overall, we proposed a simple microfluidic chip containing dual ECM and spheroids for the assessment of the interactions of polymeric nanocarriers with biological interfaces and evaluating nanoformulations' capacity to cross the tumor tissue barrier.

JTD Keywords: Extracellular matrix, Microfluidics, Nanoparticle mobility, Polymeric micelles, Tumor-on-a-chip


Molina, BG, Ocón, G, Silva, FM, Iribarren, JI, Armelin, E, Alemán, C, (2023). Thermally-induced shape memory behavior of polylactic acid/ polycaprolactone blends European Polymer Journal 196, 112230

A study of the shape memory effect on extruded polylactic acid (PLA) and polycaprolactone (PCL) blends, which were transformed into films and movable components of articulated specimens by hot pressing and 3D printing, respectively, is presented. After characterizing their chemical structure by FTIR spectroscopy and their wetta-bility, the thermal properties and mechanical response of the blends were evaluated and compared with those of neat PLA and PCL. The blends exhibited very good interfacial adhesion between the phases, even though they are immiscible polymers. The thermoresponsive shape memory effects of neat PLA, neat PCL and PLA/PCL blends with different compositions (90/30, 70/30 and 50/50 w/w%) were evaluated considering three consecutive heating-cooling cycles. Comparison of the initial permanent state geometry with the geometries achieved after each heating-cooling cycle for both films and 3D printed specimens, evidenced that the 70/30 w/w% blend exhibited the best behavior. Thus, the blends obtained with such composition showed the maximum reversibility between the temporary and permanent states (i.e. highest shape recovery capability) and shape fixing of such two states.

JTD Keywords: 3d printing, Fibers, Films, Poly(lactic acid), Polycaprolactone, Polylactic acid, Polymer, Shape fixing, Shape-memory polymers, Unimolecular micelles


Almadhi, S, Forth, J, Rodriguez-Arco, L, Duro-Castano, A, Williams, I, Ruiz-Pérez, L, Battaglia, G, (2023). Bottom-Up Preparation of Phase-Separated Polymersomes Macromolecular Bioscience 23, 2300068

A bottom-up approach to fabricating monodisperse, two-component polymersomes that possess phase-separated ("patchy") chemical topology is presented. This approach is compared with already-existing top-down preparation methods for patchy polymer vesicles, such as film rehydration. These findings demonstrate a bottom-up, solvent-switch self-assembly approach that produces a high yield of nanoparticles of the target size, morphology, and surface topology for drug delivery applications, in this case patchy polymersomes of a diameter of ≈50 nm. In addition, an image processing algorithm to automatically calculate polymersome size distributions from transmission electron microscope images based on a series of pre-processing steps, image segmentation, and round object identification is presented.© 2023 Wiley-VCH GmbH.

JTD Keywords: assemblies, copolymers, evolution, membranes, micelles, ph, phase separation, polymersomes, rafts, self-assembly, size, vesicles, Cell biology, Drug delivery, Phase separation, Polymersomes, Self-assembly, Vesicles


Brewer, MK, Torres, P, Ayala, V, Portero-Otin, M, Pamplona, R, Andrés-Benito, P, Ferrer, I, Guinovart, JJ, Duran, J, (2023). Glycogen accumulation modulates life span in a mouse model of amyotrophic lateral sclerosis Journal Of Neurochemistry ,

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord. Glial cells, including astrocytes and microglia, have been shown to contribute to neurodegeneration in ALS, and metabolic dysfunction plays an important role in the progression of the disease. Glycogen is a soluble polymer of glucose found at low levels in the central nervous system that plays an important role in memory formation, synaptic plasticity, and the prevention of seizures. However, its accumulation in astrocytes and/or neurons is associated with pathological conditions and aging. Importantly, glycogen accumulation has been reported in the spinal cord of human ALS patients and mouse models. In the present work, using the SOD1G93A mouse model of ALS, we show that glycogen accumulates in the spinal cord and brainstem during symptomatic and end stages of the disease and that the accumulated glycogen is associated with reactive astrocytes. To study the contribution of glycogen to ALS progression, we generated SOD1G93A mice with reduced glycogen synthesis (SOD1G93A GShet mice). SOD1G93A GShet mice had a significantly longer life span than SOD1G93A mice and showed lower levels of the astrocytic pro-inflammatory cytokine Cxcl10, suggesting that the accumulation of glycogen is associated with an inflammatory response. Supporting this, inducing an increase in glycogen synthesis reduced life span in SOD1G93A mice. Altogether, these results suggest that glycogen in reactive astrocytes contributes to neurotoxicity and disease progression in ALS.© 2023 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

JTD Keywords: activation, astrocytes, brain, contributes, expression, glycogen, impairment, mice, motor neurons, neurodegeneration, reactive astrocytes, spinal cord, Amyotrophic lateral sclerosis, Astrocytes, Glycogen, Motor neurons, Motor-neuron degeneration, Neurodegeneration, Spinal cord


Andres-Benito, P, Flores, A, Busquet-Areny, S, Carmona, M, Ausin, K, Cartas-Cejudo, P, Lachen-Montes, M, Del Rio, JA, Fernandez-Irigoyen, J, Santamaria, E, Ferrer, I, (2023). Deregulated Transcription and Proteostasis in Adult mapt Knockout Mouse International Journal Of Molecular Sciences 24, 6559

Transcriptomics and phosphoproteomics were carried out in the cerebral cortex of B6.Cg-Mapttm1(EGFP)Klt (tau knockout: tau-KO) and wild-type (WT) 12 month-old mice to learn about the effects of tau ablation. Compared with WT mice, tau-KO mice displayed reduced anxiety-like behavior and lower fear expression induced by aversive conditioning, whereas recognition memory remained unaltered. Cortical transcriptomic analysis revealed 69 downregulated and 105 upregulated genes in tau-KO mice, corresponding to synaptic structures, neuron cytoskeleton and transport, and extracellular matrix components. RT-qPCR validated increased mRNA levels of col6a4, gabrq, gad1, grm5, grip2, map2, rab8a, tubb3, wnt16, and an absence of map1a in tau-KO mice compared with WT mice. A few proteins were assessed with Western blotting to compare mRNA expression with corresponding protein levels. Map1a mRNA and protein levels decreased. However, β-tubulin III and GAD1 protein levels were reduced in tau-KO mice. Cortical phosphoproteomics revealed 121 hypophosphorylated and 98 hyperphosphorylated proteins in tau-KO mice. Deregulated phosphoproteins were categorized into cytoskeletal (n = 45) and membrane proteins, including proteins of the synapses and vesicles, myelin proteins, and proteins linked to membrane transport and ion channels (n = 84), proteins related to DNA and RNA metabolism (n = 36), proteins connected to the ubiquitin-proteasome system (UPS) (n = 7), proteins with kinase or phosphatase activity (n = 21), and 22 other proteins related to variegated pathways such as metabolic pathways, growth factors, or mitochondrial function or structure. The present observations reveal a complex altered brain transcriptome and phosphoproteome in tau-KO mice with only mild behavioral alterations.

JTD Keywords: computational platform, conformational-changes, cytoskeleton, disease, expression, isoforms, mechanisms, mice, phosphoproteomics, phosphorylation, synapse, tau-ko, tauopathies, transcriptomics, Tau-ko, Tau-protein, Transcriptomics


Duran, J, (2023). Role of Astrocytes in the Pathophysiology of Lafora Disease and Other Glycogen Storage Disorders Cells 12, 722

Lafora disease is a rare disorder caused by loss of function mutations in either the EPM2A or NHLRC1 gene. The initial symptoms of this condition are most commonly epileptic seizures, but the disease progresses rapidly with dementia, neuropsychiatric symptoms, and cognitive deterioration and has a fatal outcome within 5–10 years after onset. The hallmark of the disease is the accumulation of poorly branched glycogen in the form of aggregates known as Lafora bodies in the brain and other tissues. Several reports have demonstrated that the accumulation of this abnormal glycogen underlies all the pathologic traits of the disease. For decades, Lafora bodies were thought to accumulate exclusively in neurons. However, it was recently identified that most of these glycogen aggregates are present in astrocytes. Importantly, astrocytic Lafora bodies have been shown to contribute to pathology in Lafora disease. These results identify a primary role of astrocytes in the pathophysiology of Lafora disease and have important implications for other conditions in which glycogen abnormally accumulates in astrocytes, such as Adult Polyglucosan Body disease and the buildup of Corpora amylacea in aged brains.

JTD Keywords: abnormal glycogen, accumulation, aggregation, bodies, branching enzyme deficiency, corpora-amylacea, epilepsy, glycogen, lafora disease, mice, mouse model, neurodegeneration, neuroinflammation, progressive myoclonus epilepsy, ubiquitin ligase, Glycogen, Neuroinflammation, Polyglucosan body disease


Cañellas-Socias, A, Cortina, C, Hernando-Momblona, X, Palomo-Ponce, S, Mulholland, EJ, Turon, G, Mateo, L, Conti, S, Roman, O, Sevillano, M, Slebe, F, Stork, D, Caballé-Mestres, A, Berenguer-Llergo, A, Alvarez-Varela, A, Fenderico, N, Novellasdemunt, L, Jiménez-Gracia, L, Sipka, T, Bardia, L, Lorden, P, Colombelli, J, Heyn, H, Trepat, X, Tejpar, S, Sancho, E, Tauriello, DVF, Leedham, S, Attolini, CSO, Batlle, E, (2022). Metastatic recurrence in colorectal cancer arises from residual EMP1+ cells Nature 611, 603-613

Around 30-40% of patients with colorectal cancer (CRC) undergoing curative resection of the primary tumour will develop metastases in the subsequent years1. Therapies to prevent disease relapse remain an unmet medical need. Here we uncover the identity and features of the residual tumour cells responsible for CRC relapse. An analysis of single-cell transcriptomes of samples from patients with CRC revealed that the majority of genes associated with a poor prognosis are expressed by a unique tumour cell population that we named high-relapse cells (HRCs). We established a human-like mouse model of microsatellite-stable CRC that undergoes metastatic relapse after surgical resection of the primary tumour. Residual HRCs occult in mouse livers after primary CRC surgery gave rise to multiple cell types over time, including LGR5+ stem-like tumour cells2-4, and caused overt metastatic disease. Using Emp1 (encoding epithelial membrane protein 1) as a marker gene for HRCs, we tracked and selectively eliminated this cell population. Genetic ablation of EMP1high cells prevented metastatic recurrence and mice remained disease-free after surgery. We also found that HRC-rich micrometastases were infiltrated with T cells, yet became progressively immune-excluded during outgrowth. Treatment with neoadjuvant immunotherapy eliminated residual metastatic cells and prevented mice from relapsing after surgery. Together, our findings reveal the cell-state dynamics of residual disease in CRC and anticipate that therapies targeting HRCs may help to avoid metastatic relapse.© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

JTD Keywords: colonization, defines, human colon, mutations, plasticity, retrieval, stem-cells, subtypes, underlie, Animal, Animal cell, Animal experiment, Animal model, Animal tissue, Animals, Article, Cancer, Cancer growth, Cancer immunotherapy, Cancer inhibition, Cancer recurrence, Cancer staging, Cell, Cell adhesion, Cell migration, Cell population, Cell surface receptor, Cohort analysis, Colorectal cancer, Colorectal neoplasms, Colorectal tumor, Comprehensive molecular characterization, Controlled study, Crispr-cas9 system, Cytoskeleton, Disease exacerbation, Disease progression, Dynamics, Emp1 gene, Epithelial membrane protein-1, Extracellular matrix, Flow cytometry, Fluorescence intensity, Gene expression, Genetics, Human, Human cell, Humans, Immune response, Immunofluorescence, In situ hybridization, Marker gene, Metastasis potential, Mice, Minimal residual disease, Mouse, Neoplasm proteins, Neoplasm recurrence, local, Neoplasm, residual, Nonhuman, Pathology, Phenotype, Prevention and control, Protein, Receptors, cell surface, Single cell rna seq, Tumor, Tumor protein, Tumor recurrence


Pujals, S, Albertazzi, L, Fuentes, E, Gabaldon, Y, Collado, M, Dhiman, S, (2022). Supramolecular Stability of Benzene-1,3,5-tricarboxamide Supramolecular Polymers in Biological Media: Beyond the Stability-Responsiveness Trade-off Journal Of The American Chemical Society 144, 21196-21205

Supramolecular assemblies have been gaining attention in recent years in the field of drug delivery because of their unique formulation possibilities and adaptive behavior. Their non-covalent nature allows for their self-assembly formulation and responsiveness to stimuli, an appealing feature to trigger a therapeutic action with spatiotemporal control. However, facing in vivo conditions is very challenging for non-covalent structures. Dilution and proteins in blood can have a direct impact on self assembly, destabilizing the supramolecules and leading to a premature and uncontrolled cargo release. To rationalize this behavior, we designed three monomers exhibiting distinct hydrophobic cores that self-assemble into photo-responsive fibers. We estimated their stability-responsiveness tradeoff in vitro, finding two well-separated regimes. These are low-robustness regime, in which the system equilibrates quickly and responds readily to stimuli, and high-robustness regime, in which the system equilibrates slowly and is quite insensitive to stimuli. We probed the performance of both regimes in a complex environment using Fo''rster resonance energy transfer (FRET). Interestingly, the stability-responsiveness trade-off defines perfectly the extent of disassembly caused by dilution but not the one caused by protein interaction. This identifies a disconnection between intrinsic supramolecular robustness and supramolecular stability in the biological environment, strongly influenced by the disassembly pathway upon protein interaction. These findings shed light on the key features to address for supramolecular stability in the biological environment.

JTD Keywords: Azobenzene, Critical micellization, Fret, Guide, Nanoparticles, Ph, Photoisomerization, Polymerization, Shape, Water


Ferrer, I, Andres-Benito, P, Ausin, K, Cartas-Cejudo, P, Lachen-Montes, M, del Rio, JA, Fernandez-Irigoyen, J, Santamaria, E, (2022). Dysregulated Brain Protein Phosphorylation Linked to Increased Human Tau Expression in the hTau Transgenic Mouse Model International Journal Of Molecular Sciences 23, 6427

Altered protein phosphorylation is a major pathologic modification in tauopathies and Alzheimer's disease (AD) linked to abnormal tau fibrillar deposits in neurofibrillary tangles (NFTs) and pre-tangles and beta-amyloid deposits in AD. hTau transgenic mice, which express 3R and less 4R human tau with no mutations in a murine knock-out background, show increased tau deposition in neurons but not NFTs and pre-tangles at the age of nine months. Label-free (phospho)proteomics and SWATH-MS identified 2065 proteins in hTau and wild-type (WT) mice. Only six proteins showed increased levels in hTau; no proteins were down-regulated. Increased tau phosphorylation in hTau was detected at Ser199, Ser202, Ser214, Ser396, Ser400, Thr403, Ser404, Ser413, Ser416, Ser422, Ser491, and Ser494, in addition to Thr181, Thr231, Ser396/Ser404, but not at Ser202/Thr205. In addition, 4578 phosphopeptides (corresponding to 1622 phosphoproteins) were identified in hTau and WT mice; 64 proteins were differentially phosphorylated in hTau. Sixty proteins were grouped into components of membranes, membrane signaling, synapses, vesicles, cytoskeleton, DNA/RNA/protein metabolism, ubiquitin/proteasome system, cholesterol and lipid metabolism, and cell signaling. These results showed that over-expression of human tau without pre-tangle and NFT formation preferentially triggers an imbalance in the phosphorylation profile of specific proteins involved in the cytoskeletal-membrane-signaling axis.

JTD Keywords: cytoskeleton, htau, membrane, phosphorylation, synapsis, tau, Aggregation, Alzheimers-disease, Animal-models, Cytoskeleton, Htau, Membrane, Mice, Networks, Pathology, Phosphoproteome analysis, Phosphorylation, Synapsis, Tau, Tauopathies, Tauopathy


Ferrer, I, Andrés-Benito, P, Garcia-Esparcia, P, López-Gonzalez, I, Valiente, D, Jordán-Pirla, M, Carmona, M, Sala-Jarque, J, Gil, V, del Rio, JA, (2022). Differences in Tau Seeding in Newborn and Adult Wild-Type Mice International Journal Of Molecular Sciences 23, 4789

Alzheimer’s disease (AD) and other tauopathies are common neurodegenerative diseases in older adults; in contrast, abnormal tau deposition in neurons and glial cells occurs only exceptionally in children. Sarkosyl-insoluble fractions from sporadic AD (sAD) containing paired helical filaments (PHFs) were inoculated unilaterally into the thalamus in newborn and three-month-old wild-type C57BL/6 mice, which were killed at different intervals from 24 h to six months after inoculation. Tau-positive cells were scanty and practically disappeared at three months in mice inoculated at the age of a newborn. In contrast, large numbers of tau-positive cells, including neurons and oligodendrocytes, were found in the thalamus of mice inoculated at three months and killed at the ages of six months and nine months. Mice inoculated at the age of newborn and re-inoculated at the age of three months showed similar numbers and distribution of positive cells in the thalamus at six months and nine months. This study shows that (a) differences in tau seeding between newborn and young adults may be related to the ratios between 3Rtau and 4Rtau, and the shift to 4Rtau predominance in adults, together with the immaturity of connections in newborn mice, and (b) intracerebral inoculation of sAD PHFs in newborn mice does not protect from tau seeding following intracerebral inoculation of sAD PHFs in young/adult mice.

JTD Keywords: alzheimer's disease, alzheimer-disease, alzheimer’s disease, expression, mouse tau, neurofibrillary tangles, newborn, pathological tau, propagation, protein-tau, spread, tau seeding and spreading, thalamus, transgenic mice, Paired helical filaments, Tau seeding and spreading, Thalamus


Pellegrini, P, Hervera, A, Varea, O, Brewer, MK, López-Soldado, I, Guitart, A, Aguilera, M, Prats, N, del Río, JA, Guinovart, JJ, Duran, J, (2022). Lack of p62 Impairs Glycogen Aggregation and Exacerbates Pathology in a Mouse Model of Myoclonic Epilepsy of Lafora Molecular Neurobiology 59, 1214-1229

Lafora disease (LD) is a fatal childhood-onset dementia characterized by the extensive accumulation of glycogen aggregates—the so-called Lafora Bodies (LBs)—in several organs. The accumulation of LBs in the brain underlies the neurological phenotype of the disease. LBs are composed of abnormal glycogen and various associated proteins, including p62, an autophagy adaptor that participates in the aggregation and clearance of misfolded proteins. To study the role of p62 in the formation of LBs and its participation in the pathology of LD, we generated a mouse model of the disease (malinKO) lacking p62. Deletion of p62 prevented LB accumulation in skeletal muscle and cardiac tissue. In the brain, the absence of p62 altered LB morphology and increased susceptibility to epilepsy. These results demonstrate that p62 participates in the formation of LBs and suggest that the sequestration of abnormal glycogen into LBs is a protective mechanism through which it reduces the deleterious consequences of its accumulation in the brain. © 2021, The Author(s).

JTD Keywords: accumulation, astrocytes, autophagy receptors, contributes, deficient mice, epilepsy, glycogen, lafora bodies, lafora disease, malin, metabolism, neurodegeneration, neuroinflammation, p62, polyglucosan bodies, temporal-lobe epilepsy, Epilepsy, Glycogen, Inclusion-body formation, Lafora bodies, Lafora disease, Malin, Neuroinflammation, P62


Boda, SK, Aparicio, C, (2022). Dual keratinocyte-attachment and anti-inflammatory coatings for soft tissue sealing around transmucosal oral implants Biomaterials Science 10, 665-677

Unlike the attachment of soft epithelial skin tissue to penetrating solid natural structures like fingernails and teeth, sealing around percutaneous/permucosal devices such as dental implants is hindered by inflammation and epidermal down growth. Here, we employed a dual keratinocyte-adhesive peptide and anti-inflammatory biomolecule coating on titanium to promote oral epithelial tissue attachment. For minimizing inflammation-triggered epidermal down growth, we coated pristine and oxygen plasma pre-treated polished titanium (pTi) with conjugated linoleic acid (CLA). Further, in order to aid in soft tissue attachment via the formation of hemidesmosomes, adhesive structures by oral keratinocytes, we coated the anionic linoleic acid (LA) adsorbed titanium with cationic cell adhesive peptides (CAP), LamLG3, a peptide derived from Laminin 332, the major extracellular matrix component of the basement membrane in skin tissue and Net1, derived from Netrin-1, a neural chemoattractant capable of epithelial cell attachment via alpha 6 beta 4 integrins. The dual CLA-CAP coatings on pTi were characterized by X-ray photoelectron spectroscopy and dynamic water contact angle measurements. The proliferation of human oral keratinocytes (TERT-2/OKF6) was accelerated on the peptide coated titanium while also promoting the expression of Col XVII and beta-4 integrin, two markers for hemidesmosomes. Simultaneously, CLA coating suppressed the production of inducible nitric oxide synthase (anti-iNOS); a pro-inflammatory M1 marker expressed in lipopolysaccharide (LPS) stimulated murine macrophages (RAW 264.7) and elevated expression of anti-CD206, associated to an anti-inflammatory M2 macrophage phenotype. Taken together, the dual keratinocyte-adhesive peptide and anti-inflammatory biomolecule coating on titanium can help reduce inflammation and promote permucosal/peri-implant soft tissue sealing.

JTD Keywords: Adhesives, Animal, Animals, Anti-inflammatories, Anti-inflammatory agents, Antiinflammatory agent, Biomolecules, Bone, Cell adhesion, Cell-adhesives, Coatings, Conjugated linoleic acid, Conjugated linoleic-acid, Contact angle, Hemidesmosome, Hemidesmosomes, Human, Humans, Hydroxyapatite, Inflammation, Integrins, Keratinocyte, Keratinocytes, Linoleic acid, Macrophages, Mice, Mouse, Nitric oxide, Oral implants, Pathology, Peptides, Skin tissue, Soft tissue, Supplementation, Surface properties, Surface property, Tissue, Titania, Titanium, X ray photoelectron spectroscopy


Gawish, R, Starkl, P, Pimenov, L, Hladik, A, Lakovits, K, Oberndorfer, F, Cronin, SJF, Ohradanova-Repic, A, Wirnsberger, G, Agerer, B, Endler, L, Capraz, T, Perthold, JW, Cikes, D, Koglgruber, R, Hagelkruys, A, Montserrat, N, Mirazimi, A, Boon, L, Stockinger, H, Bergthaler, A, Oostenbrink, C, Penninger, JM, Knapp, S, (2022). ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF-and IFNy-driven immunopathology Elife 11, e74623

Despite tremendous progress in the understanding of COVID-19, mechanistic insight into immunological, disease-driving factors remains limited. We generated maVie16, a mouse-adapted SARS-CoV-2, by serial passaging of a human isolate. In silico modeling revealed how only three Spike mutations of maVie16 enhanced interaction with murine ACE2. maVie16 induced profound pathology in BALB/c and C57BL/6 mice, and the resulting mouse COVID-19 (mCOVID-19) replicated critical aspects of human disease, including early lymphopenia, pulmonary immune cell infiltration, pneumonia, and specific adaptive immunity. Inhibition of the proinflammatory cyto-kines IFN? and TNF substantially reduced immunopathology. Importantly, genetic ACE2-deficiency completely prevented mCOVID-19 development. Finally, inhalation therapy with recombinant ACE2 fully protected mice from mCOVID-19, revealing a novel and efficient treatment. Thus, we here present maVie16 as a new tool to model COVID-19 for the discovery of new therapies and show that disease severity is determined by cytokine-driven immunopathology and critically dependent on ACE2 in vivo. © Gawish et al.

JTD Keywords: covid-19 mouse model, covid-19 therapy, cytokine storm, immunology, inflammation, mavie16, mouse, mouse-adapted sars-cov-2, program, recombinant soluble ace2, tmprss2, Adaptive immunity, Angiotensin converting enzyme 2, Angiotensin-converting enzyme 2, Animal, Animal cell, Animal experiment, Animal model, Animal tissue, Animals, Apoptosis, Article, Bagg albino mouse, Breathing rate, Bronchoalveolar lavage fluid, C57bl mouse, Cell composition, Cell infiltration, Controlled study, Coronavirus disease 2019, Coronavirus spike glycoprotein, Covid-19, Cytokeratin 18, Cytokine production, Dipeptidyl carboxypeptidase, Disease model, Disease models, animal, Disease severity, Drosophila-melanogaster, Enzyme linked immunosorbent assay, Expression vector, Flow cytometry, Gamma interferon, Gene editing, Gene expression, Gene mutation, Genetic engineering, Genetics, Glycosylation, High mobility group b1 protein, Histology, Histopathology, Immune response, Immunocompetent cell, Immunology, Immunopathology, Interferon-gamma, Interleukin 2, Metabolism, Mice, inbred balb c, Mice, inbred c57bl, Mouse-adapted sars-cov-2, Myeloperoxidase, Neuropilin 1, Nonhuman, Nucleocapsid protein, Pathogenicity, Peptidyl-dipeptidase a, Pyroptosis, Recombinant soluble ace2, Renin angiotensin aldosterone system, Rna extraction, Rna isolation, Sars-cov-2, Severe acute respiratory syndrome coronavirus 2, Spike glycoprotein, coronavirus, T lymphocyte activation, Trabecular meshwork, Tumor necrosis factor, Virology, Virus load, Virus replication, Virus transmission, Virus virulence


Duro-Castano, A, Rodríguez-Arco, L, Ruiz-Pérez, L, De Pace, C, Marchello, G, Noble-Jesus, C, Battaglia, G, (2021). One-Pot Synthesis of Oxidation-Sensitive Supramolecular Gels and Vesicles Biomacromolecules 22, 5052-5064

Polypeptide-based nanoparticles offer unique advantages from a nanomedicine perspective such as biocompatibility, biodegradability, and stimuli-responsive properties to (patho)physiological conditions. Conventionally, self-assembled polypeptide nanostructures are prepared by first synthesizing their constituent amphiphilic polypeptides followed by postpolymerization self-assembly. Herein, we describe the one-pot synthesis of oxidation-sensitive supramolecular micelles and vesicles. This was achieved by polymerization-induced self-assembly (PISA) of the N-carboxyanhydride (NCA) precursor of methionine using poly(ethylene oxide) as a stabilizing and hydrophilic block in dimethyl sulfoxide (DMSO). By adjusting the hydrophobic block length and concentration, we obtained a range of morphologies from spherical to wormlike micelles, to vesicles. Remarkably, the secondary structure of polypeptides greatly influenced the final morphology of the assemblies. Surprisingly, wormlike micellar morphologies were obtained for a wide range of methionine block lengths and solid contents, with spherical micelles restricted to very short hydrophobic lengths. Wormlike micelles further assembled into oxidation-sensitive, self-standing gels in the reaction pot. Both vesicles and wormlike micelles obtained using this method demonstrated to degrade under controlled oxidant conditions, which would expand their biomedical applications such as in sustained drug release or as cellular scaffolds in tissue engineering.

JTD Keywords: alpha-amino-acid, hydrogels, leuchs anhydrides, platform, polypeptides, transformation, triggered cargo release, Amino acids, Amphiphilics, Biocompatibility, Biodegradability, Block lengths, Controlled drug delivery, Dimethyl sulfoxide, Ethylene, Gels, Hydrophobicity, Medical nanotechnology, Methionine, Micelles, Morphology, One-pot synthesis, Organic solvents, Oxidation, Physiological condition, Polyethylene oxides, Post-polymerization, Ring-opening polymerization, Scaffolds (biology), Self assembly, Stimuli-responsive properties, Supramolecular chemistry, Supramolecular gels, Supramolecular micelles, Wormlike micelle


Berishvili, E, Casiraghi, F, Amarelli, C, Scholz, H, Piemonti, L, Berney, T, Montserrat, N, (2021). Mini-organs forum: how to advance organoid technology to organ transplant community Transplant International 34, 1588-1593

The generation of human mini-organs, the so-called organoids, is one of the biggest scientific advances in regenerative medicine. This technology exploits traditional three-dimensional culture techniques that support cell-autonomous self-organization responses of stem cells to derive micrometer to millimeter size versions of human organs. The convergence of the organoid technology with organ transplantation is still in its infancy but this alliance is expected to open new venues to change the way we conduct both transplant and organoid research. In this Forum we provide a summary on early achievements facilitating organoid derivation and culture. We further discuss on early advances of organoid transplantation also offering a comprehensive overview of current limitations and challenges to instruct organoid maturation. We expect that this Forum sets the ground for initial discussions between stem cell biologists, bioengineers, and the transplant community to better direct organoid basic research to advance the organ transplantation field.

JTD Keywords: in-vitro, matrix, mice, organoids, regenerative medicine, vivo, Intestinal stem-cell, Organoids, Regenerative medicine


Duran, J, Hervera, A, Markussen, KH, Varea, O, Lopez-Soldado, I, Sun, RC, del Rio, JA, Gentry, MS, Guinovart, JJ, (2021). Astrocytic glycogen accumulation drives the pathophysiology of neurodegeneration in Lafora disease Brain 144, 2349-2360

The hallmark of Lafora disease, a fatal neurodegenerative disorder, is the accumulation of intracellular glycogen aggregates called Lafora bodies. Until recently, it was widely believed that brain Lafora bodies were present exclusively in neurons and thus that Lafora disease pathology derived from their accumulation in this cell population. However, recent evidence indicates that Lafora bodies are also present in astrocytes. To define the role of astrocytic Lafora bodies in Lafora disease pathology, we deleted glycogen synthase specifically from astrocytes in a mouse model of the disease (malin(KO)). Strikingly, blocking glycogen synthesis in astrocytes-thus impeding Lafora bodies accumulation in this cell type-prevented the increase in neurodegeneration markers, autophagy impairment, and metabolic changes characteristic of the malin(KO) model. Conversely, mice that over-accumulate glycogen in astrocytes showed an increase in these markers. These results unveil the deleterious consequences of the deregulation of glycogen metabolism in astrocytes and change the perspective that Lafora disease is caused solely by alterations in neurons.

JTD Keywords: Bodies, Deficient mice, Epilepsy, Glycogen, Impairment, Lafora disease, Malin, Modulation, Mouse model, Neurodegeneration, Neuroinflammation, Neurons, Progressive myoclonus epilepsy, Seizure susceptibility, Synthase


Andreu, I, Falcones, B, Hurst, S, Chahare, N, Quiroga, X, Le Roux, AL, Kechagia, Z, Beedle, AEM, Elosegui-Artola, A, Trepat, X, Farre, R, Betz, T, Almendros, I, Roca-Cusachs, P, (2021). The force loading rate drives cell mechanosensing through both reinforcement and cytoskeletal softening Nature Communications 12, 4229

Cell response to force regulates essential processes in health and disease. However, the fundamental mechanical variables that cells sense and respond to remain unclear. Here we show that the rate of force application (loading rate) drives mechanosensing, as predicted by a molecular clutch model. By applying dynamic force regimes to cells through substrate stretching, optical tweezers, and atomic force microscopy, we find that increasing loading rates trigger talin-dependent mechanosensing, leading to adhesion growth and reinforcement, and YAP nuclear localization. However, above a given threshold the actin cytoskeleton softens, decreasing loading rates and preventing reinforcement. By stretching rat lungs in vivo, we show that a similar phenomenon may occur. Our results show that cell sensing of external forces and of passive mechanical parameters (like tissue stiffness) can be understood through the same mechanisms, driven by the properties under force of the mechanosensing molecules involved. Cells sense mechanical forces from their environment, but the precise mechanical variable sensed by cells is unclear. Here, the authors show that cells can sense the rate of force application, known as the loading rate, with effects on YAP nuclear localization and cytoskeletal stiffness remodelling.

JTD Keywords: Actin cytoskeleton, Actin filament, Actin-filament, Adhesion, Animal, Animals, Atomic force microscopy, Breathing, Cell, Cell adhesion, Cell culture, Cell nucleus, Cells, cultured, Cytoplasm, Extracellular-matrix, Fibroblast, Fibroblasts, Fibronectin, Frequency, Gene knockdown, Gene knockdown techniques, Genetics, Germfree animal, Integrin, Intracellular signaling peptides and proteins, Knockout mouse, Lung, Male, Mechanotransduction, Mechanotransduction, cellular, Metabolism, Mice, Mice, knockout, Microscopy, atomic force, Mouse, Optical tweezers, Paxillin, Physiology, Primary cell culture, Pxn protein, mouse, Rat, Rats, Rats, sprague-dawley, Respiration, Signal peptide, Softening, Specific pathogen-free organisms, Sprague dawley rat, Stress, Substrate, Substrate rigidity, Talin, Talin protein, mouse, Tln2 protein, mouse, Traction, Transmission, Ultrastructure, Yap1 protein, rat


Feiner-Gracia, N, Mares, AG, Buzhor, M, Rodriguez-Trujillo, R, Marti, JS, Amir, RJ, Pujals, S, Albertazzi, L, (2021). Real-Time Ratiometric Imaging of Micelles Assembly State in a Microfluidic Cancer-on-a-Chip Acs Applied Bio Materials 4, 669-681

© 2020 American Chemical Society. The performance of supramolecular nanocarriers as drug delivery systems depends on their stability in the complex and dynamic biological media. After administration, nanocarriers are challenged by physiological barriers such as shear stress and proteins present in blood, endothelial wall, extracellular matrix, and eventually cancer cell membrane. While early disassembly will result in a premature drug release, extreme stability of the nanocarriers can lead to poor drug release and low efficiency. Therefore, comprehensive understanding of the stability and assembly state of supramolecular carriers in each stage of delivery is the key factor for the rational design of these systems. One of the main challenges is that current 2D in vitro models do not provide exhaustive information, as they fail to recapitulate the 3D tumor microenvironment. This deficiency in the 2D model complexity is the main reason for the differences observed in vivo when testing the performance of supramolecular nanocarriers. Herein, we present a real-time monitoring study of self-assembled micelles stability and extravasation, combining spectral confocal microscopy and a microfluidic cancer-on-a-chip. The combination of advanced imaging and a reliable 3D model allows tracking of micelle disassembly by following the spectral properties of the amphiphiles in space and time during the crucial steps of drug delivery. The spectrally active micelles were introduced under flow and their position and conformation continuously followed by spectral imaging during the crossing of barriers, revealing the interplay between carrier structure, micellar stability, and extravasation. Integrating the ability of the micelles to change their fluorescent properties when disassembled, spectral confocal imaging and 3D microfluidic tumor blood vessel-on-a-chip resulted in the establishment of a robust testing platform suitable for real-time imaging and evaluation of supramolecular drug delivery carrier's stability.

JTD Keywords: cancer-on-a-chip, complex, delivery, endothelial-cells, in-vitro, microfluidic, model, nanoparticle, penetration, shear-stress, stability, supramolecular, Cancer-on-a-chip, Cell-culture, Micelle, Microfluidic, Nanoparticle, Stability, Supramolecular


Bach-Griera, Marc, Campo-Pérez, Víctor, Barbosa, Sandra, Traserra, Sara, Guallar-Garrido, Sandra, Moya-Andérico, Laura, Herrero-Abadía, Paula, Luquin, Marina, Rabanal, Rosa Maria, Torrents, Eduard, Julián, Esther, (2020). Mycolicibacterium brumae is a safe and non-toxic immunomodulatory agent for cancer treatment Vaccines 8, (2), 198

Intravesical Mycobacterium bovis Bacillus Calmette–Guérin (BCG) immunotherapy remains the gold-standard treatment for non-muscle-invasive bladder cancer patients, even though half of the patients develop adverse events to this therapy. On exploring BCG-alternative therapies, Mycolicibacterium brumae, a nontuberculous mycobacterium, has shown outstanding anti-tumor and immunomodulatory capabilities. As no infections due to M. brumae in humans, animals, or plants have been described, the safety and/or toxicity of this mycobacterium have not been previously addressed. In the present study, an analysis was made of M. brumae- and BCG-intravenously-infected severe combined immunodeficient (SCID) mice, M. brumae-intravesically-treated BALB/c mice, and intrahemacoelic-infected-Galleria mellonella larvae. Organs from infected mice and the hemolymph from larvae were processed to count bacterial burden. Blood samples from mice were also taken, and a wide range of hematological and biochemical parameters were analyzed. Finally, histopathological alterations in mouse tissues were evaluated. Our results demonstrate the safety and non-toxic profile of M. brumae. Differences were observed in the biochemical, hematological and histopathological analysis between M. brumae and BCG-infected mice, as well as survival curves rates and colony forming units (CFU) counts in both animal models. M. brumae constitutes a safe therapeutic biological agent, overcoming the safety and toxicity disadvantages presented by BCG in both mice and G. mellonella animal models.

JTD Keywords: Bladder cancer, Nontuberculous mycobacteria, BCG, Safety, Galleria mellonella, Mice


Caddeo, C., Manca, M. L., Matos, M., Gutierrez, G., Díez-Sales, O., Peris, J. E., Usach, I., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2017). Functional response of novel bioprotective poloxamer-structured vesicles on inflamed skin Nanomedicine: Nanotechnology, Biology, and Medicine 13, (3), 1127-1136

Resveratrol and gallic acid, a lipophilic and a hydrophilic phenol, were co-loaded in innovative, biocompatible nanovesicles conceived for ensuring the protection of the skin from oxidative- and inflammatory-related affections. The basic vesicles, liposomes and glycerosomes, were produced by a simple, one-step method involving the dispersion of phospholipid and phenols in water or water/glycerol blend, respectively. Liposomes and glycerosomes were modified by the addition of poloxamer, a stabilizer and viscosity enhancer, thus obtaining viscous or semisolid dispersions of structured vesicles. The vesicles were spherical, unilamellar and small in size (~70 nm in diameter). The superior ability of the poloxamer-structured vesicles to promote the accumulation of both phenols in the skin was demonstrated, as well as their low toxicity and great ability to protect fibroblasts from chemically-induced oxidative damage. The in vivo administration of the vesicular phenols on TPA (phorbol ester)-exposed skin led to a significant reduction of oedema and leukocyte infiltration.

JTD Keywords: Fibroblasts, Mice, Phenol, Phospholipid vesicle, Poloxamer, Skin inflammation


Fernanda, Andrade, Pedro, Fonte, Ana, Costa, Cassilda Cunha, Reis, Rute, Nunes, Andreia, Almeida, Domingos, Ferreira, Mireia, Oliva, Bruno, Sarmento, (2016). Pharmacological and toxicological assessment of innovative self-assembled polymeric micelles as powders for insulin pulmonary delivery Nanomedicine 11, (17), 2305-2317

Aim: Explore the use of polymeric micelles in the development of powders intended for pulmonary delivery of biopharmaceuticals, using insulin as a model protein. Materials & methods: Formulations were assessed in vitro for aerosolization properties and in vivo for efficacy and safety using a streptozotocin-induced diabetic rat model. Results: Powders presented good aerosolization properties like fine particle fraction superior to 40% and a mass median aerodynamic diameter inferior of 6 μm. Endotracheally instilled powders have shown a faster onset of action than subcutaneous administration of insulin at a dose of 10 IU/kg, with pharmacological availabilities up to 32.5% of those achieved by subcutaneous route. Additionally, micelles improved the hypoglycemic effect of insulin. Bronchoalveolar lavage screening for toxicity markers (e.g., lactate dehydrogenase, cytokines) revealed no signs of lung inflammation and cytotoxicity 14 days postadministration. Conclusion: Developed powders showed promising safety and efficacy characteristics for the systemic delivery of insulin by pulmonary administration.

JTD Keywords: Fine particle fraction, Inhalation, Insulin, In vivo, Pharmacological availability, Polymeric micelles, Pulmonary toxicity


Andrade, F., Neves, J. D., Gener, P., Schwartz, S., Ferreira, D., Oliva, M., Sarmento, B., (2015). Biological assessment of self-assembled polymeric micelles for pulmonary administration of insulin Nanomedicine: Nanotechnology, Biology, and Medicine 11, (7), 1621-1631

Pulmonary delivery of drugs for both local and systemic action has gained new attention over the last decades. In this work, different amphiphilic polymers (Soluplus®, Pluronic® F68, Pluronic® F108 and Pluronic® F127) were used to produce lyophilized formulations for inhalation of insulin. Development of stimuli-responsive, namely glucose-sensitive, formulations was also attempted with the addition of phenylboronic acid (PBA). Despite influencing the in vitro release of insulin from micelles, PBA did not confer glucose-sensitive properties to formulations. Lyophilized powders with aerodynamic diameter (<. 6. μm) compatible with good deposition in the lungs did not present significant in vitro toxicity for respiratory cell lines. Additionally, some formulations, in particular Pluronic® F127-based formulations, enhanced the permeation of insulin through pulmonary epithelial models and underwent minimal internalization by macrophages in vitro. Overall, formulations based on polymeric micelles presenting promising characteristics were developed for the delivery of insulin by inhalation. From the Clinical Editor: The ability to deliver other systemic drugs via inhalation has received renewed interests in the clinical setting. This is especially true for drugs which usually require injections for delivery, like insulin. In this article, the authors investigated their previously developed amphiphilic polymers for inhalation of insulin in an in vitro model. The results should provide basis for future in vivo studies.

JTD Keywords: Cytotoxicity, Inhalation, Permeability, Phagocytosis, Polymeric micelles, Protein delivery


Andrade, F., Fonte, P., Oliva, M., Videira, M., Ferreira, D., Sarmento, B., (2015). Solid state formulations composed by amphiphilic polymers for delivery of proteins: Characterization and stability International Journal of Pharmaceutics 486, (1-2), 195-206

Abstract Nanocomposite powders composed by polymeric micelles as vehicles for delivery proteins were developed in this work, using insulin as model protein. Results showed that size and polydispersity of micelles were dependent on the amphiphilic polymer used, being all lower than 300 nm, while all the formulations displayed spherical shape and surface charge close to neutrality. Percentages of association efficiency and loading capacity up to 94.15 ± 3.92 and 8.56 ± 0.36, respectively, were obtained. X-ray photoelectron spectroscopy (XPS) measurements confirmed that insulin was partially present at the hydrophilic shell of the micelles. Lyophilization did not significantly change the physical characteristics of micelles, further providing easily dispersion when in contact to aqueous medium. The native-like conformation of insulin was maintained at high percentages (around 80%) after lyophilization as indicated by Fourier transform infrared spectroscopy (FTIR) and far-UV circular dichroism (CD). Moreover, Raman spectroscopy did not evidenced significant interactions among the formulation components. The formulations shown to be physically stable upon storage up to 6 months both at room-temperature (20 C) and fridge (4 C), with only a slight loss (maximum of 15%) of the secondary structure of the protein. Among the polymers tested, Pluronic® F127 produced the carrier formulations more promising for delivery of proteins.

JTD Keywords: Amphiphilic polymers, Insulin, Lyophilization, Polymeric micelles, Stability


McLenachan, S., Menchon, C., Raya, A., Consiglio, A., Edel, M. J., (2012). Cyclin A(1) is essential for setting the pluripotent state and reducing tumorigenicity of induced pluripotent stem cells Stem Cells and Development , 21, (15), 2891-2899

The proper differentiation and threat of cancer rising from the application of induced pluripotent stem (iPS) cells are major bottlenecks in the field and are thought to be inherently linked to the pluripotent nature of iPS cells. To address this question, we have compared iPS cells to embryonic stem cells (ESCs), the gold standard of ground state pluripotency, in search for proteins that may improve pluripotency of iPS cells. We have found that when reprogramming somatic cells toward pluripotency, 1%-5% of proteins of 5 important cell functions are not set to the correct expression levels compared to ESCs, including mainly cell cycle proteins. We have shown that resetting cyclin A1 protein expression of early- passage iPS cells closer to the ground state pluripotent state of mouse ESCs improves the pluripotency and reduces the threat of cancer of iPS cells. This work is a proof of principle that reveals that setting expression of certain proteins correctly during reprogramming is essential for achieving ESC- state pluripotency. This finding would be of immediate help to those researchers in different fields of iPS cell work that specializes in cell cycle, apoptosis, cell adhesion, cell signaling, and cytoskeleton.

JTD Keywords: Self-renewal, IPS cells, Ground-state, C-MYC, Generation, Pathway, Disease, Mice, Link, P53