DONATE

Publications

by Keyword: Technology

González J-E, Rodríguez MA, Caballero E, Pardo A, Marco S, Farré R, (2024). Open-source, low-cost App-driven Internet of Things approach to facilitate respiratory oscillometry at home and in developing countries Pulmonology 30, 180-183

Ruiz-González, N, Esporrín-Ubieto, D, Hortelao, AC, Fraire, JC, Bakenecker, AC, Guri-Canals, M, Cugat, R, Carrillo, JM, Garcia-Batlletbó, M, Laiz, P, Patiño, T, Sánchez, S, (2024). Swarms of Enzyme-Powered Nanomotors Enhance the Diffusion of Macromolecules in Viscous Media Small 20, 2309387

Over the past decades, the development of nanoparticles (NPs) to increase the efficiency of clinical treatments has been subject of intense research. Yet, most NPs have been reported to possess low efficacy as their actuation is hindered by biological barriers. For instance, synovial fluid (SF) present in the joints is mainly composed of hyaluronic acid (HA). These viscous media pose a challenge for many applications in nanomedicine, as passive NPs tend to become trapped in complex networks, which reduces their ability to reach the target location. This problem can be addressed by using active NPs (nanomotors, NMs) that are self-propelled by enzymatic reactions, although the development of enzyme-powered NMs, capable of navigating these viscous environments, remains a considerable challenge. Here, the synergistic effects of two NMs troops, namely hyaluronidase NMs (HyaNMs, Troop 1) and urease NMs (UrNMs, Troop 2) are demonstrated. Troop 1 interacts with the SF by reducing its viscosity, thus allowing Troop 2 to swim more easily through the SF. Through their collective motion, Troop 2 increases the diffusion of macromolecules. These results pave the way for more widespread use of enzyme-powered NMs, e.g., for treating joint injuries and improving therapeutic effectiveness compared with traditional methods. The conceptual idea of the novel approach using hyaluronidase NMs (HyaNMs) to interact with and reduce the viscosity of the synovial fluid (SF) and urease NMs (UrNMs) for a more efficient transport of therapeutic agents in joints.image

JTD Keywords: Biological barrier, Clinical research, Clinical treatments, Collective motion, Collective motion,nanomotors,nanorobots,swarming,viscous medi, Collective motions, Complex networks, Enzymatic reaction, Enzymes, Hyaluronic acid, Hyaluronic-acid,ph,viscoelasticity,adsorption,barriers,behavior,ureas, Macromolecules, Medical nanotechnology, Nano robots, Nanomotors, Nanorobots, Swarming, Synovial fluid, Target location, Viscous media, Viscous medium


Avalos-Padilla, Y, Fernandez-Busquets, X, (2024). Nanotherapeutics against malaria: A decade of advancements in experimental models Wiley Interdisciplinary Reviews-Nanomedicine And Nanobiotechnology 16, e1943

Malaria, caused by different species of protists of the genus Plasmodium, remains among the most common causes of death due to parasitic diseases worldwide, mainly for children aged under 5. One of the main obstacles to malaria eradication is the speed with which the pathogen evolves resistance to the drug schemes developed against it. For this reason, it remains urgent to find innovative therapeutic strategies offering sufficient specificity against the parasite to minimize resistance evolution and drug side effects. In this context, nanotechnology-based approaches are now being explored for their use as antimalarial drug delivery platforms due to the wide range of advantages and tuneable properties that they offer. However, major challenges remain to be addressed to provide a cost-efficient and targeted therapeutic strategy contributing to malaria eradication. The present work contains a systematic review of nanotechnology-based antimalarial drug delivery systems generated during the last 10 years. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease

JTD Keywords: Adjuvant system, Antimalarial activities, Antimalarial agent, Antimalarial drug, Antimalarial drugs, Antimalarials, Artemisinin resistance, Causes of death, Child, Controlled drug delivery, Diseases, Drug delivery system, Drug delivery systems, Drug interactions, Drug side-effects, Drug-delivery, Experimental modelling, Heparan-sulfate, Human, Humans, In-vitro, Malaria, Malaria vaccine, Mannosylated liposomes, Medical nanotechnology, Models, theoretical, Nanocarriers, Nanomedicine, Nanotechnology, Parasite-, Parasitics, Plasmodium, Plasmodium-falciparum malaria, Red-blood-cells, Targeted delivery, Targeted drug delivery, Theoretical model, Therapeutic strategy


Blanco-Cabra, Nuria, Alcacer-Almansa, Julia, Admella, Joana, Arevalo-Jaimes, Betsy Veronica, Torrents, Eduard, (2024). Nanomedicine against biofilm infections: A roadmap of challenges and limitations Wiley Interdisciplinary Reviews-Nanomedicine And Nanobiotechnology 16, e1944

Microbial biofilms are complex three-dimensional structures where sessile microbes are embedded in a polymeric extracellular matrix. Their resistance toward the host immune system as well as to a diverse range of antimicrobial treatments poses a serious health and development threat, being in the top 10 global public health threats declared by the World Health Organization. In an effort to combat biofilm-related microbial infections, several strategies have been developed to independently eliminate biofilms or to complement conventional antibiotic therapies. However, their limitations leave room for other treatment alternatives, where the application of nanotechnology to biofilm eradication has gained significant relevance in recent years. Their small size, penetration efficiency, and the design flexibility that they present makes them a promising alternative for biofilm infection treatment, although they also present set-backs. This review aims to describe the main possibilities and limitations of nanomedicine against biofilms, while covering the main aspects of biofilm formation and study, and the current therapies for biofilm treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.

JTD Keywords: Anti-bacterial agents, Anti-infective agents, Antiinfective agent, Antimicrobial, Antimicrobials, Antimicrobials,bacteria,biofilm,infectious diseases,microorganism, Bacteria, Biofilm, Biofilm infections, Biofilms, Complex three dimensional structures, Diseases, Diverse range, Drug-delivery systems,in-vitro,cellular toxicity,nanoparticles,penetration,model,biocompatibility,perspectives,hyperthermia,diagnosi, Extracellular matrices, Global public health, Health risks, Infectious disease, Infectious diseases, Medical nanotechnology, Microbial biofilm, Microorganisms, Nanomedicine, Polymer, Polymers, Regulatory issues, Roadmap


Farré, R, Rodríguez-Lázaro, MA, Otero, J, Gavara, N, Sunyer, R, Farré, N, Gozal, D, Almendros, I, (2024). Low-cost, open-source device for simultaneously subjecting rodents to different circadian cycles of light, food, and temperature Frontiers In Physiology 15, 1356787

Exposure of experimental rodents to controlled cycles of light, food, and temperature is important when investigating alterations in circadian cycles that profoundly influence health and disease. However, applying such stimuli simultaneously is difficult in practice. We aimed to design, build, test, and open-source describe a simple device that subjects a conventional mouse cage to independent cycles of physiologically relevant environmental variables. The device is based on a box enclosing the rodent cage to modify the light, feeding, and temperature environments. The device provides temperature-controlled air conditioning (heating or cooling) by a Peltier module and includes programmable feeding and illumination. All functions are set by a user-friendly front panel for independent cycle programming. Bench testing with a model simulating the CO2 production of mice in the cage showed: a) suitable air renewal (by measuring actual ambient CO2), b) controlled realistic illumination at the mouse enclosure (measured by a photometer), c) stable temperature control, and d) correct cycling of light, feeding, and temperature. The cost of all the supplies (retail purchased by e-commerce) was <300 US$. Detailed technical information is open-source provided, allowing for any user to reliably reproduce or modify the device. This approach can considerably facilitate circadian research since using one of the described low-cost devices for any mouse group with a given light-food-temperature paradigm allows for all the experiments to be performed simultaneously, thereby requiring no changes in the light/temperature of a general-use laboratory. 1 Introduction

JTD Keywords: Animal experiment, Animal model, Animal research, Article, Circadian alteration, Circadian rhythm, Commercial phenomena, Controlled study, Cycling, Energy consumption, Energy-expenditure, Experimental model, Feeding, Food, Food availability, Illumination, Intermittent fasting, Light, Light cycle, Light dark cycle, Mouse, Nonhuman, Open source technology, Open-source hardware, Performance, Photography, Research, Rhythms, Rodent, Temperature, Temperature cycle


Bilgin, C, Hutar, J, Li, JH, Castano, O, Ribo, M, Kallmes, DF, (2023). Catheter design primer for neurointerventionalists Journal Of Neurointerventional Surgery 15, 1117-1121

Neurovascular catheter technology has rapidly evolved over the past decade. While performance characteristics are well known to the practitioner, the design features of these new-generation catheters and their implications on performance metrics remain a mystery to most clinicians due to the limited number of available resources. This knowledge gap hampers informed device choices and also limits collaboration between clinicians and engineers. To aid fellow neurointerventionalists, in this primer we have summarized the basic concepts of catheter design and construction.

JTD Keywords: catheter, device, Catheter, Device, Technology


Resina, L, Alemán, C, Ferreira, FC, Esteves, T, (2023). Protein-imprinted polymers: How far have "plastic antibodies" come? Biotechnology Advances 68, 108220

Antibodies are highly selective and sensitive, making them the gold standard for recognition affinity tools. However, their production cost is high and their downstream processing is time-consuming. Molecularly imprinted polymers (MIPs) are tailor-made by incorporating specific molecular recognition sites in their structure, thus translating into receptor-like activity mode of action. The interest in molecular imprinting technology, applied to biomacromolecules, has increased in the past decade. MIPs, produced using biomolecules as templates, commonly referred to as "plastic antibodies" or "artificial receptors", have been considered as suitable cheaper and easy to produce alternatives to antibodies. Research on MIPs, designed to recognize proteins or peptides is particularly important, with potential contributions towards biomedical applications, namely biosensors and targeted drug delivery systems. This mini review will cover recent advances on (bio)molecular imprinting technology, where proteins or peptides are targeted or mimicked for sensing and therapeutic applications. Polymerization methods are reviewed elsewhere, being out of the scope of this review. Template selection and immobilization approaches, monomers and applications will be discussed, highlighting possible drawbacks and gaps in research.Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

JTD Keywords: artificial antibodies, assay, biomimetics, biomolecules, biosensors, delivery, diagnostics, drug delivery, electrochemical detection, nanoparticles, receptors, science-and-technology, selective recognition, selective targeting, separation, templates, Artificial antibodies, Biomimetics, Biomolecules, Biosensors, Diagnostics, Drug delivery, Molecularly imprinted polymers, Nanoparticles, Selective targeting, Solid-phase synthesis


Guillem-Marti, J, Vidal, E, Girotti, A, Heras-Parets, A, Torres, D, Arias, FJ, Ginebra, MP, Rodriguez-Cabello, JC, Manero, JM, (2023). Functionalization of 3D-Printed Titanium Scaffolds with Elastin-like Recombinamers to Improve Cell Colonization and Osteoinduction Pharmaceutics 15, 872

The 3D printing of titanium (Ti) offers countless possibilities for the development of personalized implants with suitable mechanical properties for different medical applications. However, the poor bioactivity of Ti is still a challenge that needs to be addressed to promote scaffold osseointegration. The aim of the present study was to functionalize Ti scaffolds with genetically modified elastin-like recombinamers (ELRs), synthetic polymeric proteins containing the elastin epitopes responsible for their mechanical properties and for promoting mesenchymal stem cell (MSC) recruitment, proliferation, and differentiation to ultimately increase scaffold osseointegration. To this end, ELRs containing specific cell-adhesive (RGD) and/or osteoinductive (SNA15) moieties were covalently attached to Ti scaffolds. Cell adhesion, proliferation, and colonization were enhanced on those scaffolds functionalized with RGD-ELR, while differentiation was promoted on those with SNA15-ELR. The combination of both RGD and SNA15 into the same ELR stimulated cell adhesion, proliferation, and differentiation, although at lower levels than those for every single moiety. These results suggest that biofunctionalization with SNA15-ELRs could modulate the cellular response to improve the osseointegration of Ti implants. Further investigation on the amount and distribution of RGD and SNA15 moieties in ELRs could improve cell adhesion, proliferation, and differentiation compared to the present study.

JTD Keywords: 3d printing, adhesion, biofunctionalization, elastin-like recombinamers, functionalization, hydroxyapatite, osseointegration, polymers, purification, technology, titanium, 3d printing, Surfaces, Titanium


Avalos-Padilla, Y, Georgiev, VN, Ewins, E, Robinson, T, Orozco, E, Lipowsky, R, Dimova, R, (2023). Stepwise remodeling and subcompartment formation in individual vesicles by three ESCRT-III proteins Iscience 26, 105765

The endosomal sorting complex required for transport (ESCRT) is a multi-protein machinery involved in several membrane remodeling processes. Different approaches have been used to resolve how ESCRT proteins scission membranes. However, the underlying mechanisms generating membrane deformations are still a matter of debate. Here, giant unilamellar vesicles, microfluidic technology, and micropipette aspiration are combined to continuously follow the ESCRT-III-mediated membrane remodeling on the single-vesicle level for the first time. With this approach, we identify different mechanisms by which a minimal set of three ESCRT-III proteins from Entamoeba histolytica reshape the membrane. These proteins modulate the membrane stiffness and spontaneous curvature to regulate bud size and generate intraluminal vesicles even in the absence of ATP. We demonstrate that the bud stability depends on the protein concentration and membrane tension. The approaches introduced here should open the road to diverse applications in synthetic biology for establishing artificial cells with several membrane compartments.© 2022 The Author(s).

JTD Keywords: bilayer, curvature, diffusion-coefficients, identification, membrane-scission, phase-diagram, reveals, sorting complex, structural basis, Biophysics, Biotechnology, Cell biology, Giant vesicles, Membranes


Castagna, R, Kolarski, D, Durand-de Cuttoli, R, Maleeva, G, (2022). Orthogonal Control of Neuronal Circuits and Behavior Using Photopharmacology Journal Of Molecular Neuroscience 72, 1433-1442

Over the last decades, photopharmacology has gone far beyond its proof-of-concept stage to become a bona fide approach to study neural systems in vivo. Indeed, photopharmacological control has expanded over a wide range of endogenous targets, such as receptors, ion channels, transporters, kinases, lipids, and DNA transcription processes. In this review, we provide an overview of the recent progresses in the in vivo photopharmacological control of neuronal circuits and behavior. In particular, the use of small aquatic animals for the in vivo screening of photopharmacological compounds, the recent advances in optical modulation of complex behaviors in mice, and the development of adjacent techniques for light and drug delivery in vivo are described.

JTD Keywords: brain circuits, circadian rhythm, in vivo photomodulation, in vivo technology, neuronal receptors, Architecture, Azobenzene photoswitches, Brain circuits, Channels, Circadian rhythm, In vivo photomodulation, In vivo technology, Light, Modulator, Neuronal receptors, Optical control, Optogenetics, Pharmacology, Photopharmacology, Receptors, Systems


Comelles, J, Castillo-Fernández, O, Martínez, E, (2022). How to Get Away with Gradients Advances In Experimental Medicine And Biology 1379, 31-54

Biomolecular gradients are widely present in multiple biological processes. Historically they were reproduced in vitro by using micropipettes, Boyden and Zigmond chambers, or hydrogels. Despite the great utility of these setups in the study of gradient-related problems such as chemotaxis, they face limitations when trying to translate more complex in vivo-like scenarios to in vitro systems. In the last 20 years, the advances in manufacturing of micromechanical systems (MEMS) had opened the possibility of applying this technology to biology (BioMEMS). In particular, microfluidics has proven extremely efficient in setting-up biomolecular gradients which are stable, controllable, reproducible and at length scales that are relevant to cells. In this chapter, we give an overview of different methods to generate molecular gradients using microfluidics, then we discuss the different steps of the pipeline to fabricate a gradient generator microfluidic device, and at the end, we show an application example of the fabrication of a microfluidic device that can be used to generate a surface-bound biomolecular gradient.© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.

JTD Keywords: biomems, gradient, microfluidics, model, nanotechnology, proteins, Biomems, Gradient, Mechanisms, Microfabrication, Microfluidics, Nanotechnology


Woythe, L, Madhikar, P, Feiner-Gracia, N, Storm, C, Albertazzi, L, (2022). A Single-Molecule View at Nanoparticle Targeting Selectivity: Correlating Ligand Functionality and Cell Receptor Density Acs Nano 16, 3785-3796

Antibody-functionalized nanoparticles (NPs) are commonly used to increase the targeting selectivity toward cells of interest. At a molecular level, the number of functional antibodies on the NP surface and the density of receptors on the target cell determine the targeting interaction. To rationally develop selective NPs, the single-molecule quantitation of both parameters is highly desirable. However, techniques able to count molecules with a nanometric resolution are scarce. Here, we developed a labeling approach to quantify the number of functional cetuximabs conjugated to NPs and the expression of epidermal growth factor receptors (EGFRs) in breast cancer cells using direct stochastic optical reconstruction microscopy (dSTORM). The single-molecule resolution of dSTORM allows quantifying molecules at the nanoscale, giving a detailed insight into the distributions of individual NP ligands and cell receptors. Additionally, we predicted the fraction of accessible antibody-conjugated NPs using a geometrical model, showing that the total number exceeds the accessible number of antibodies. Finally, we correlated the NP functionality, cell receptor density, and NP uptake to identify the highest cell uptake selectivity regimes. We conclude that single-molecule functionality mapping using dSTORM provides a molecular understanding of NP targeting, aiding the rational design of selective nanomedicines.

JTD Keywords: active targeting, active targeting dstorm, antibodies, dstorm, heterogeneity, multivalency, nanomedicine, nanoparticle functionality, size, super-resolution microscopy, surface, Active targeting, Antibodies, Cell membranes, Cell receptors, Cytology, Direct stochastic optical reconstruction microscopy, Dstorm, Heterogeneity, Ligands, Medical nanotechnology, Molecules, Nanomedicine, Nanoparticle functionality, Nanoparticle targeting, Nanoparticles, Optical reconstruction, Single molecule, Stochastic systems, Stochastics, Super-resolution microscopy, Superresolution microscopy


Aydin, O, Passaro, AP, Raman, R, Spellicy, SE, Weinberg, RP, Kamm, RD, Sample, M, Truskey, GA, Zartman, J, Dar, RD, Palacios, S, Wang, J, Tordoff, J, Montserrat, N, Bashir, R, Saif, MTA, Weiss, R, (2022). Principles for the design of multicellular engineered living systems Apl Bioengineering 6, 10903

Remarkable progress in bioengineering over the past two decades has enabled the formulation of fundamental design principles for a variety of medical and non-medical applications. These advancements have laid the foundation for building multicellular engineered living systems (M-CELS) from biological parts, forming functional modules integrated into living machines. These cognizant design principles for living systems encompass novel genetic circuit manipulation, self-assembly, cell–cell/matrix communication, and artificial tissues/organs enabled through systems biology, bioinformatics, computational biology, genetic engineering, and microfluidics. Here, we introduce design principles and a blueprint for forward production of robust and standardized M-CELS, which may undergo variable reiterations through the classic design-build-test-debug cycle. This Review provides practical and theoretical frameworks to forward-design, control, and optimize novel M-CELS. Potential applications include biopharmaceuticals, bioreactor factories, biofuels, environmental bioremediation, cellular computing, biohybrid digital technology, and experimental investigations into mechanisms of multicellular organisms normally hidden inside the “black box” of living cells.

JTD Keywords: cell-fate specification, endothelial-cells, escherichia-coli, extracellular-matrix, gene-expression noise, nuclear hormone-receptors, pluripotent stem-cells, primitive endoderm, transcription factors, Artificial tissues, Assembly cells, Biological parts, Biological systems, Bioremediation, Blood-brain-barrier, Cell engineering, Cell/matrix communication, Design principles, Environmental technology, Functional modules, Fundamental design, Genetic circuits, Genetic engineering, Living machines, Living systems, Medical applications, Molecular biology, Synthetic biology


Cascione, M, Rizzello, L, Manno, D, Serra, A, De Matteis, V, (2022). Green Silver Nanoparticles Promote Inflammation Shutdown in Human Leukemic Monocytes Materials (Basel) 15, 775

The use of silver nanoparticles (Ag NPs) in the biomedical field deserves a mindful analysis of the possible inflammatory response which could limit their use in the clinic. Despite the anti-cancer properties of Ag NPs having been widely demonstrated, there are still few studies concerning their involvement in the activation of specific inflammatory pathways. The inflammatory outcome depends on the synthetic route used in the NPs production, in which toxic reagents are employed. In this work, we compared two types of Ag NPs, obtained by two different chemical routes: conventional synthesis using sodium citrate and a green protocol based on leaf extracts as a source of reduction and capping agents. A careful physicochemical characterization was carried out showing spherical and stable Ag NPs with an average size between 20 nm and 35 nm for conventional and green Ag NPs respectively. Then, we evaluated their ability to induce the activation of inflammation in Human Leukemic Monocytes (THP-1) differentiated into M0 macrophages using 1 µM and 2 µM NPs concentrations (corresponded to 0.1 µg/mL and 0.2 µg/mL respectively) and two-time points (24 h and 48 h). Our results showed a clear difference in Nuclear Factor ?B (NF-?b) activation, Interleukins 6–8 (IL-6, IL-8) secretion, Tumor Necrosis Factor-? (TNF-?) and Cyclooxygenase-2 (COX-2) expression exerted by the two kinds of Ag NPs. Green Ag NPs were definitely tolerated by macrophages compared to conventional Ag NPs which induced the activation of all the factors mentioned above. Subsequently, the exposure of breast cancer cell line (MCF-7) to the green Ag NPs showed that they exhibited antitumor activity like the conventional ones, but surprisingly, using the MCF-10A line (not tumoral breast cells) the green Ag NPs did not cause a significant decrease in cell viability. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: activation, biosynthesis, gold nanoparticles, green route, inflammation response, mechanism, metal, nanotechnology, physico-chemical properties, raman-spectroscopy, resonance, silver nanoparticles, surface, Biomedical fields, Cell culture, Cell death, Chemical activation, Chemical routes, Conventional synthesis, Diseases, Green route, Inflammation response, Inflammatory response, Macrophages, Metal nanoparticles, Nf-kappa-b, Pathology, Physico-chemical properties, Physicochemical property, Property, Silver nanoparticles, Sodium compounds, Synthetic routes, Toxic reagents


Duro-Castano, A, Rodríguez-Arco, L, Ruiz-Pérez, L, De Pace, C, Marchello, G, Noble-Jesus, C, Battaglia, G, (2021). One-Pot Synthesis of Oxidation-Sensitive Supramolecular Gels and Vesicles Biomacromolecules 22, 5052-5064

Polypeptide-based nanoparticles offer unique advantages from a nanomedicine perspective such as biocompatibility, biodegradability, and stimuli-responsive properties to (patho)physiological conditions. Conventionally, self-assembled polypeptide nanostructures are prepared by first synthesizing their constituent amphiphilic polypeptides followed by postpolymerization self-assembly. Herein, we describe the one-pot synthesis of oxidation-sensitive supramolecular micelles and vesicles. This was achieved by polymerization-induced self-assembly (PISA) of the N-carboxyanhydride (NCA) precursor of methionine using poly(ethylene oxide) as a stabilizing and hydrophilic block in dimethyl sulfoxide (DMSO). By adjusting the hydrophobic block length and concentration, we obtained a range of morphologies from spherical to wormlike micelles, to vesicles. Remarkably, the secondary structure of polypeptides greatly influenced the final morphology of the assemblies. Surprisingly, wormlike micellar morphologies were obtained for a wide range of methionine block lengths and solid contents, with spherical micelles restricted to very short hydrophobic lengths. Wormlike micelles further assembled into oxidation-sensitive, self-standing gels in the reaction pot. Both vesicles and wormlike micelles obtained using this method demonstrated to degrade under controlled oxidant conditions, which would expand their biomedical applications such as in sustained drug release or as cellular scaffolds in tissue engineering.

JTD Keywords: alpha-amino-acid, hydrogels, leuchs anhydrides, platform, polypeptides, transformation, triggered cargo release, Amino acids, Amphiphilics, Biocompatibility, Biodegradability, Block lengths, Controlled drug delivery, Dimethyl sulfoxide, Ethylene, Gels, Hydrophobicity, Medical nanotechnology, Methionine, Micelles, Morphology, One-pot synthesis, Organic solvents, Oxidation, Physiological condition, Polyethylene oxides, Post-polymerization, Ring-opening polymerization, Scaffolds (biology), Self assembly, Stimuli-responsive properties, Supramolecular chemistry, Supramolecular gels, Supramolecular micelles, Wormlike micelle


Vukomanovic, M, Cendra, MD, Baelo, A, Torrents, E, (2021). Nano-engineering stable contact-based antimicrobials: Chemistry at the interface between nano-gold and bacteria Colloids And Surfaces B-Biointerfaces 208, 112083

Contact-based antimicrobials, as antibiotic-free technologies that use non-specific interactions with bacterial cells to exert antimicrobial activity, are a prospective solution in fighting the global issue of bacterial resistance. A very simplified approach to their design considers the direct bonding of cationic guanidine-containing amino acids to the surface of nano-gold carriers. The structure enables antimicrobial activity due to a high density of cationic surface charges. This opens a set of novel questions that are important for their effective engineering, particularly regarding (i) chemistry and events that take place at the interface between NPs and cells, (ii) the direct influence of a charge (and its change) on interactions with bacterial and mammalian cells, and (iii) the stability of structures (and their antimicrobial activity) in the presence of enzymes, which are addressed in this paper. Because of the ability of amino acid-functionalized nano-gold to retain structural and functional activity, even after exposure to a range of physicochemical stimuli, they provide an excellent nanotechnological platform for designing highly effective contact-based antimicrobials and their applications.

JTD Keywords: agents, antibiotic-free technology, arginine, charged amino acids, contact-based antimicrobials, discovery, enzyme-resistant antimicrobials, functionalized gold, peptides, polymers, resistant, Antibiotic-free technology, Charged amino acids, Contact-based antimicrobials, Enzyme-resistant antimicrobials, Functionalized gold, Nanoparticles


Guasch-Girbau, A, Fernandez-Busquets, X, (2021). Review of the current landscape of the potential of nanotechnology for future malaria diagnosis, treatment, and vaccination strategies Pharmaceutics 13, 2189

Malaria eradication has for decades been on the global health agenda, but the causative agents of the disease, several species of the protist parasite Plasmodium, have evolved mechanisms to evade vaccine-induced immunity and to rapidly acquire resistance against all drugs entering clinical use. Because classical antimalarial approaches have consistently failed, new strategies must be explored. One of these is nanomedicine, the application of manipulation and fabrication technology in the range of molecular dimensions between 1 and 100 nm, to the development of new medical solutions. Here we review the current state of the art in malaria diagnosis, prevention, and therapy and how nanotechnology is already having an incipient impact in improving them. In the second half of this review, the next generation of antimalarial drugs currently in the clinical pipeline is presented, with a definition of these drugs’ target product profiles and an assessment of the potential role of nanotechnology in their development. Opinions extracted from interviews with experts in the fields of nanomedicine, clinical malaria, and the economic landscape of the disease are included to offer a wider scope of the current requirements to win the fight against malaria and of how nanoscience can contribute to achieve them. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: antibody-bearing liposomes, antimalarial drugs, combination therapies, drug-delivery strategies, malaria diagnosis, malaria prophylaxis, malaria therapy, nanocarriers, nanomedicine, nanoparticles, nanotechnology, plasmodium, plasmodium-falciparum, red-blood-cells, targeted delivery, targeted drug delivery, vitro antimalarial activity, Antimalarial drugs, Isothermal amplification lamp, Malaria diagnosis, Malaria prophylaxis, Malaria therapy, Nanocarriers, Nanomedicine, Nanotechnology, Plasmodium, Targeted drug delivery


Blanco-Cabra, N, López-Martínez, MJ, Arévalo-Jaimes, BV, Martin-Gómez, MT, Samitier, J, Torrents, E, (2021). A new BiofilmChip device for testing biofilm formation and antibiotic susceptibility Npj Biofilms And Microbiomes 7, 62

Currently, three major circumstances threaten the management of bacterial infections: increasing antimicrobial resistance, expansion of chronic biofilm-associated infections, and lack of an appropriate approach to treat them. To date, the development of accelerated drug susceptibility testing of biofilms and of new antibiofouling systems has not been achieved despite the availability of different methodologies. There is a need for easy-to-use methods of testing the antibiotic susceptibility of bacteria that form biofilms and for screening new possible antibiofilm strategies. Herein, we present a microfluidic platform with an integrated interdigitated sensor (BiofilmChip). This new device allows an irreversible and homogeneous attachment of bacterial cells of clinical origin, even directly from clinical specimens, and the biofilms grown can be monitored by confocal microscopy or electrical impedance spectroscopy. The device proved to be suitable to study polymicrobial communities, as well as to measure the effect of antimicrobials on biofilms without introducing disturbances due to manipulation, thus better mimicking real-life clinical situations. Our results demonstrate that BiofilmChip is a straightforward tool for antimicrobial biofilm susceptibility testing that could be easily implemented in routine clinical laboratories.

JTD Keywords: cells, model, resistance, shear, technology, In-vitro


Checa, M, Millan-Solsona, R, Mares, AG, Pujals, S, Gomila, G, (2021). Fast Label-Free Nanoscale Composition Mapping of Eukaryotic Cells Via Scanning Dielectric Force Volume Microscopy and Machine Learning Small Methods 5, 2100279

Mapping the biochemical composition of eukaryotic cells without the use of exogenous labels is a long-sought objective in cell biology. Recently, it has been shown that composition maps on dry single bacterial cells with nanoscale spatial resolution can be inferred from quantitative nanoscale dielectric constant maps obtained with the scanning dielectric microscope. Here, it is shown that this approach can also be applied to the much more challenging case of fixed and dry eukaryotic cells, which are highly heterogeneous and show micrometric topographic variations. More importantly, it is demonstrated that the main bottleneck of the technique (the long computation times required to extract the nanoscale dielectric constant maps) can be shortcut by using supervised neural networks, decreasing them from weeks to seconds in a wokstation computer. This easy-to-use data-driven approach opens the door for in situ and on-the-fly label free nanoscale composition mapping of eukaryotic cells with scanning dielectric microscopy. © 2021 The Authors. Small Methods published by Wiley-VCH GmbH

JTD Keywords: eukaryotic cells, label-free mapping, machine learning, nanoscale, scanning dielectric microscopy, Biochemical composition, Cells, Constant, Cytology, Data-driven approach, Dielectric forces, Dielectric materials, Eukaryotic cells, Label-free mapping, Machine learning, Mapping, Nanoscale, Nanoscale composition, Nanoscale spatial resolution, Nanotechnology, Scanning, Scanning dielectric microscopy, Supervised neural networks


Balakrishnan, H, Millan-Solsona, R, Checa, M, Fabregas, R, Fumagalli, L, Gomila, G, (2021). Depth mapping of metallic nanowire polymer nanocomposites by scanning dielectric microscopy Nanoscale 13, 10116-10126

Polymer nanocomposite materials based on metallic nanowires are widely investigated as transparent and flexible electrodes or as stretchable conductors and dielectrics for biosensing. Here we show that Scanning Dielectric Microscopy (SDM) can map the depth distribution of metallic nanowires within the nanocomposites in a non-destructive way. This is achieved by a quantitative analysis of sub-surface electrostatic force microscopy measurements with finite-element numerical calculations. As an application we determined the three-dimensional spatial distribution of ?50 nm diameter silver nanowires in ?100 nm-250 nm thick gelatin films. The characterization is done both under dry ambient conditions, where gelatin shows a relatively low dielectric constant, ?r ? 5, and under humid ambient conditions, where its dielectric constant increases up to ?r ? 14. The present results show that SDM can be a valuable non-destructive subsurface characterization technique for nanowire-based nanocomposite materials, which can contribute to the optimization of these materials for applications in fields such as wearable electronics, solar cell technologies or printable electronics. © The Royal Society of Chemistry.

JTD Keywords: composite, constant, electrodes, mode, nanostructures, objects, progress, subsurface, tomography, Composite materials, Dielectric materials, Electric force microscopy, Electrostatic force, Force microscopy, Low dielectric constants, Nanocomposites, Numerical calculation, Polymer nanocomposite, Printable electronics, Scanning dielectric microscopy, Silver nanowires, Solar cell technology, Stretchable conductors, Subsurface characterizations, Transparent electrodes, Wearable technology


Covington, JA, Marco, S, Persaud, KC, Schiffman, SS, Nagle, HT, (2021). Artificial Olfaction in the 21st Century Ieee Sensors Journal 21, 12969-12990

The human olfactory system remains one of the most challenging biological systems to replicate. Humans use it without thinking, where it can equally offer protection from harm and bring enjoyment in equal measure. It is the system’s ability to detect and analyze complex odors, without the need for specialized infra-structure, that is the envy of many scientists. The field of artificial olfaction has recruited and stimulated interdisciplinary research and commercial development for several applications that include malodor measurement, medical diagnostics, food and beverage quality, environment and security. Over the last century, innovative engineers and scientists have been focused on solving a range of problems associated with measurement and control of odor. The IEEE Sensors Journal has published Special Issues on olfaction in 2002 and 2012. Here we continue that coverage. In this article, we summarize early work in the 20th Century that served as the foundation upon which we have been building our odor-monitoring instrumental and measurement systems. We then examine the current state of the art that has been achieved over the last two decades as we have transitioned into the 21st Century. Much has been accomplished, but great progress is needed in sensor technology, system design, product manufacture and performance standards. In the final section, we predict levels of performance and ubiquitous applications that will be realized during in the mid to late 21st Century.

JTD Keywords: air-quality, breath analysis, calibration transfer, chemical sensor arrays, chemosensor arrays, drift compensation, electronic nose, gas sensors, headspace sampling, machine learning, machine olfaction, odor detection, plume structure, voc analysis, Artificial olfaction, Electrodes, Electronic nose, Electronic nose technology, Headspace sampling, Instruments, Machine learning, Machine olfaction, Monitoring, Odor detection, Olfactory, Sensor phenomena and characterization, Sensors, Temperature sensors, Voc analysis


González-Piñero, M, Páez-Avilés, C, Juanola-Feliu, E, Samitier, J, (2021). Cross-fertilization of knowledge and technologies in collaborative research projects Journal Of Knowledge Management 25, 34-59

Purpose: This paper aims to explore how the cross-fertilization of knowledge and technologies in EU-funded research projects, including serious games and gamification, is influenced by the following variables: multidisciplinarity, knowledge base and organizations (number and diversity). The interrelation of actors and projects form a network of innovation. The largest contribution to cross-fertilization comes from the multidisciplinary nature of projects and the previous knowledge and technology of actors. The analysis draws on the understanding of how consortia perform as an innovation network, what their outcomes are and what capabilities are needed to reap value. Design/methodology/approach: All the research projects including serious games and/or gamification, funded by the EU-Horizon 2020 work programme, have been analyzed to test the hypotheses in this paper. The study sample covers the period between 2014 and 2016 (June), selecting the 87 research projects that comprised 519 organizations as coordinators and participants, and 597 observations – because more organizations participate in more than one project. The data were complemented by documentary and external database analysis. Findings: To create cross-fertilization of knowledge and technologies, the following emphasis should be placed on projects: partners concern various disciplines; partners have an extensive knowledge base for generating novel combinations and added-value technologies; there is a diverse typology of partners with unique knowledge and skills; and there is a limited number of organizations not too closely connected to provide cross-fertilization. Research limitations/implications: First, the database sample covers a period of 30 months. The authors’ attention was focused on this period because H2020 prioritized for the first time the serious games and gamification with two specific calls (ICT-21–14 and ICT-24–16) and, second, for the explosion of projects including these technologies in the past years (Adkins, 2017). These facts can be understood as a way to push the research to higher technology readiness levels (TRLs) and introducing the end-user in the co-creation and co-development along the value chain. Second, an additional limitation makes reference to the European focus of the projects, missing strong regional initiatives not identified and studied. Originality/value: This paper has attempted to explore and define theoretically and empirically the characteristics found in the cross-fertilization of collaborative research projects, emphasizing which variables, and how, need to be stimulated to benefit more multidisciplinary consortia and accelerate the process of innovation. © 2021, Manel González-Piñero, Cristina Páez-Avilés, Esteve Juanola-Feliu and Josep Samitier.

JTD Keywords: absorptive-capacity, business model, cross-fertilization of knowledge, diversity, front-end, impact, innovation systems, knowledge management, management research, science, social networks, team, technology, Cross-fertilization of knowledge, Innovation, Knowledge management, Management research, Research-and-development, Technology


Blanco-Fernandez, B, Castano, O, Mateos-Timoneda, MA, Engel, E, Perez-Amodio, S, (2021). Nanotechnology Approaches in Chronic Wound Healing Advances In Wound Care 10, 234-256

Significance: The incidence of chronic wounds is increasing due to our aging population and the augment of people afflicted with diabetes. With the extended knowledge on the biological mechanisms underlying these diseases, there is a novel influx of medical technologies into the conventional wound care market. Recent Advances: Several nanotechnologies have been developed demonstrating unique characteristics that address specific problems related to wound repair mechanisms. In this review, we focus on the most recently developed nanotechnology-based therapeutic agents and evaluate the efficacy of each treatment in in vivo diabetic models of chronic wound healing. Critical Issues: Despite the development of potential biomaterials and nanotechnology-based applications for wound healing, this scientific knowledge is not translated into an increase of commercially available wound healing products containing nanomaterials. Future Directions: Further studies are critical to provide insights into how scientific evidences from nanotechnology-based therapies can be applied in the clinical setting.

JTD Keywords: chronic, diabetes, liposomes, nanofibers, nanoparticles, Chronic, Chronic wound, Diabetes, Diabetic wound, Diabetic-rats, Dressings, Drug mechanism, Extracellular-matrix, Growth-factor, Human, In-vitro, Liposome, Liposomes, Mesenchymal stem-cells, Metal nanoparticle, Nanofiber, Nanofibers, Nanofibrous scaffolds, Nanoparticles, Nanotechnology, Nonhuman, Polyester, Polymer, Polysaccharide, Priority journal, Protein, Review, Self assembled protein nanoparticle, Silk fibroin, Skin wounds, Wound healing, Wound healing promoting agent


Woythe, L, Tito, NB, Albertazzi, L, (2021). A quantitative view on multivalent nanomedicine targeting Advanced Drug Delivery Reviews 169, 1-21

© 2020 The Authors Although the concept of selective delivery has been postulated over 100 years ago, no targeted nanomedicine has been clinically approved so far. Nanoparticles modified with targeting ligands to promote the selective delivery of therapeutics towards a specific cell population have been extensively reported. However, the rational design of selective particles is still challenging. One of the main reasons for this is the lack of quantitative theoretical and experimental understanding of the interactions involved in cell targeting. In this review, we discuss new theoretical models and experimental methods that provide a quantitative view of targeting. We show the new advancements in multivalency theory enabling the rational design of super-selective nanoparticles. Furthermore, we present the innovative approaches to obtain key targeting parameters at the single-cell and single molecule level and their role in the design of targeting nanoparticles. We believe that the combination of new theoretical multivalent design and experimental methods to quantify receptors and ligands aids in the rational design and clinical translation of targeted nanomedicines.

JTD Keywords: binding-kinetics, biological identity, biomolecular corona, blood-brain-barrier, drug-delivery, gold nanoparticles, multivalency, nanotechnology, protein corona, quantitative characterization, rational design, super-selectivity, superresolution microscopy, tumor heterogeneity, Ligand-receptor interactions, Multivalency, Nanotechnology, Quantitative characterization, Rational design, Super-selectivity


Costa, JD, Ballester, BR, Verschure, PFMJ, (2021). A Rehabilitation Wearable Device to Overcome Post-stroke Learned Non-use. Methodology, Design and Usability Communications In Computer And Information Science 1538, 198-205

After a stroke, a great number of patients experience persistent motor impairments such as hemiparesis or weakness in one entire side of the body. As a result, the lack of use of the paretic limb might be one of the main contributors to functional loss after clinical discharge. We aim to reverse this cycle by promoting the use of the paretic limb during activities of daily living (ADLs). To do so, we describe the key components of a system composed of a wearable bracelet (i.e., a smartwatch) and a mobile phone, designed to bring a set of neurorehabilitation principles that promote acquisition, retention and generalization of skills to the home of the patient. A fundamental question is whether the loss in motor function derived from learned–non–use may emerge as a consequence of decision–making processes for motor optimization. Our system is based on well-established rehabilitation strategies that aim to reverse this behaviour by increasing the reward associated with action execution and implicitly reducing the expected cost of using the paretic limb, following the notion of reinforcement–induced movement therapy (RIMT). Here we validate an accelerometer-based measure of arm use and its capacity to discriminate different activities that require increasing movement of the arm. The usability and acceptance of the device as a rehabilitation tool is tested using a battery of self–reported and objective measurements obtained from acute/subacute patients and healthy controls. We believe that an extension of these technologies will allow for the deployment of unsupervised rehabilitation paradigms during and beyond hospitalization time. © 2021, Springer Nature Switzerland AG.

JTD Keywords: adls, hemiparesis, learned non-use, wearables, Activities of daily living, Adls, Functional loss, Generalisation, Hemiparesis, Learned non-use, Motor impairments, Neurorehabilitation [], Patient experiences, Stroke, Wearable devices, Wearable technology, Wearables


Blancas, Maria, Valero, Cristina, Mura, Anna, Vouloutsi, Vasiliki, Verschure, P., (2020). "CREA": An inquiry-based methodology to teach robotics to children Robotics in Education International Conference on Robotics in Education (RiE) , Springer International Publishing (Vienna, Austria) Advances in Intelligent Systems and Computing (AISC, volume 1023), 45-51

Learning programming and robotics offers the opportunity to practice problem-solving, creativity, and team-work and it provides important competencies to train for the 21st century. However, programming can be challenging, and children may encounter difficulties in learning the syntax or using the coding environment. To address this issue, we have developed a methodology for teaching programming, design and robotics based on inquiry-based learning and hands-on oriented activities together with visual programming. We have applied and evaluated this new methodology within the extracurricular activity of an international elementary school in Barcelona. Our findings showed acquisition and learning of technical language, understanding of electronics devices, understanding the mapping of coding into action via the robot’s behavior. This suggests that our approach is a valid and effective teaching methodology for the instructional design of robotics and programming.

JTD Keywords: Educational technology, Instructional design, Robotics


Infante, Elvira, Stannard, Andrew, Board, Stephanie J., Rico-Lastres, Palma, Rostkova, Elena, Beedle, Amy E. M., Lezamiz, Ainhoa, Wang, Yong Jian, Gulaidi Breen, Samuel, Panagaki, Fani, Sundar Rajan, Vinoth, Shanahan, Catherine, Roca-Cusachs, Pere, Garcia-Manyes, Sergi, (2019). The mechanical stability of proteins regulates their translocation rate into the cell nucleus Nature Physics 15, 973-981

A cell’s ability to react to mechanical stimuli is known to be affected by the transport of transcription factors, the proteins responsible for regulating transcription of DNA into RNA, across the membrane enveloping its nucleus. Yet the molecular mechanisms by which mechanical cues control this process remain unclear. Here we show that one such protein, myocardin-related transcription factor A (MRTFA), is imported into the nucleus at a rate that is inversely correlated with its nanomechanical stability, but independent of its thermodynamic stability. Attaching mechanically stable proteins to MRTFA results in reduced gene expression and the subsequent slowing down of cell migration. We conclude that the mechanical unfolding of proteins regulates their nuclear translocation rate, and highlight the role of the nuclear pore complex as a selective mechanosensor that is capable of detecting forces as low as 10 pN. The modulation of the mechanical stability of transcription factors may represent a general strategy for the control of gene expression.

JTD Keywords: Biological physics, Biophysics, Chemistry, Nanoscience and technology


Biosca, A., Dirscherl, L., Moles, E., Imperial, S., Fernàndez-Busquets, X., (2019). An immunoPEGliposome for targeted antimalarial combination therapy at the nanoscale Pharmaceutics 11, (7), 341

Combination therapies, where two drugs acting through different mechanisms are administered simultaneously, are one of the most efficient approaches currently used to treat malaria infections. However, the different pharmacokinetic profiles often exhibited by the combined drugs tend to decrease treatment efficacy as the compounds are usually eliminated from the circulation at different rates. To circumvent this obstacle, we have engineered an immunoliposomal nanovector encapsulating hydrophilic and lipophilic compounds in its lumen and lipid bilayer, respectively. The antimalarial domiphen bromide has been encapsulated in the liposome membrane with good efficiency, although its high IC50 of ca. 1 μM for living parasites complicates its use as immunoliposomal therapy due to erythrocyte agglutination. The conjugation of antibodies against glycophorin A targeted the nanocarriers to Plasmodium-infected red blood cells and to gametocytes, the sole malaria parasite stage responsible for the transmission from the human to the mosquito vector. The antimalarials pyronaridine and atovaquone, which block the development of gametocytes, have been co-encapsulated in glycophorin A-targeted immunoliposomes. The co-immunoliposomized drugs have activities significantly higher than their free forms when tested in in vitro Plasmodium falciparum cultures: Pyronaridine and atovaquone concentrations that, when encapsulated in immunoliposomes, resulted in a 50% inhibition of parasite growth had no effect on the viability of the pathogen when used as free drugs.

JTD Keywords: Combination therapy, Immunoliposomes, Malaria, Nanomedicine, Nanotechnology, Plasmodium, Targeted drug delivery


Campillo, N., Falcones, B., Otero, J., Colina, R., Gozal, D., Navajas, D., Farré, R., Almendros, I., (2019). Differential oxygenation in tumor microenvironment modulates macrophage and cancer cell crosstalk: Novel experimental settingand proof of concept Frontiers in Oncology 9, 43

Hypoxia is a common characteristic of many solid tumors that has been associated with tumor aggressiveness. Limited diffusion of oxygen generates a gradient of oxygen availability from the blood vessel to the interstitial space and may underlie the recruitment of macrophages fostering cancer progression. However, the available data based on the recruitment of circulating cells to the tumor microenvironment has been so far carried out by conventional co-culture systems which ignore the hypoxic gradient between the vessel to the tumor interstitium. Here, we have designed a novel easy-to-build cell culture device that enables evaluation of cellular cross-talk and cell migration while they are being simultaneously exposed to different oxygenation environments. As a proof-of-concept of the potential role of differential oxygenation among interacting cells we have evaluated the activation and recruitment of macrophages in response to hypoxic melanoma, breast, and kidney cancer cells. We found that hypoxic melanoma and breast cancer cells co-cultured with normoxic macrophages enhanced their directional migration. By contrast, hypoxic kidney cells were not able to increase their recruitment. We also identified well-described hypoxia-induced pathways which could contribute in the immune cell recruitment (VEGFA and PTGS2 genes). Moreover, melanoma and breast cancer increased their proliferation. However, oxygenation levels affected neither kidney cancer cell proliferation nor gene expression, which in turn resulted in no significant changes in macrophage migration and polarization. Therefore, the cell culture device presented here provides an excellent opportunity for researchers to reproduce the in vivo hypoxic gradients in solid tumors and to study their role in recruiting circulating cells to the tumor in specific types of cancer.

JTD Keywords: Hypoxia gradient, Macrophage motility, Models of host-tumor interactions, Novel assay technology, Tumor progression


Guittard, F., Salapare III, H. S., Samitier, J., (2019). Selected Papers from N.I.C.E. 2018 Biomimetics MDPI

Nature has developed processes and robust materials, which possess superior physical, chemical, and electromagnetic properties that can withstand the most extreme conditions. We need to take inspiration from nature to obtain a more sustainable development. By combining our knowledge of processes and the knowledge of natural systems, we can create “biomimetic” solutions to the problems that we are facing as a consequence of the over-exploitation of our natural resources. Nice, France, the capital city of the French Riviera, once again welcomes the 4th edition of the International Conference on Bioinspired and Biobased Chemistry and Materials (“Nature Inspires Creativity Engineers” or N.I.C.E. 2018 Conference) from 14 to 17 of October, 2018. As in the previous editions, we are expecting hundreds of scientists and engineers to share the latest developments in the growing field of bioinspired and biobased chemistry and materials. It is a unique opportunity to understand the new challenges, to initiate new collaborations and to envisage sustainable solutions for the future.

JTD Keywords: Nanotechnology, Biotech, Smartech


Martí Coma-Cros, E., Biosca, A., Marques, J., Carol, L., Urbán, P., Berenguer, D., Riera, M. C., Delves, M., Sinden, R. E., Valle-Delgado, J. J., Spanos, L., Siden-Kiamos, I., Pérez, P., Paaijmans, K., Rottmann, M., Manfredi, A., Ferruti, P., Ranucci, E., Fernàndez-Busquets, X., (2018). Polyamidoamine nanoparticles for the oral administration of antimalarial drugs Pharmaceutics 10, (4), 225

Current strategies for the mass administration of antimalarial drugs demand oral formulations to target the asexual Plasmodium stages in the peripheral bloodstream, whereas recommendations for future interventions stress the importance of also targeting the transmission stages of the parasite as it passes between humans and mosquitoes. Orally administered polyamidoamine (PAA) nanoparticles conjugated to chloroquine reached the blood circulation and cured Plasmodium yoelii-infected mice, slightly improving the activity of the free drug and inducing in the animals immunity against malaria. Liquid chromatography with tandem mass spectrometry analysis of affinity chromatography-purified PAA ligands suggested a high adhesiveness of PAAs to Plasmodium falciparum proteins, which might be the mechanism responsible for the preferential binding of PAAs to Plasmodium-infected erythrocytes vs. non-infected red blood cells. The weak antimalarial activity of some PAAs was found to operate through inhibition of parasite invasion, whereas the observed polymer intake by macrophages indicated a potential of PAAs for the treatment of certain coinfections such as Plasmodium and Leishmania. When fluorescein-labeled PAAs were fed to females of the malaria mosquito vectors Anopheles atroparvus and Anopheles gambiae, persistent fluorescence was observed in the midgut and in other insect’s tissues. These results present PAAs as a versatile platform for the encapsulation of orally administered antimalarial drugs and for direct administration of antimalarials to mosquitoes, targeting mosquito stages of Plasmodium.

JTD Keywords: Anopheles, Antimalarial drugs, Malaria, Mosquitoes, Nanomedicine, Nanotechnology, Plasmodium, Polyamidoamines, Polymers, Targeted drug delivery


Páez-Avilés, C., van Rijnsoever, F. J., Juanola-Feliu, E., Samitier, J., (2018). Multi-disciplinarity breeds diversity: the influence of innovation project characteristics on diversity creation in nanotechnology Journal of Technology Transfer 43, (2), 458-481

Nanotechnology is an emerging and promising field of research. Creating sufficient technological diversity among its alternatives is important for the long-term success of nanotechnologies, as well as for other emerging technologies. Diversity prevents early lock-in, facilitates recombinant innovation, increases resilience, and allows market growth. Creation of new technological alternatives usually takes place in innovation projects in which public and private partners often collaborate. Currently, there is little empirical evidence about which characteristics of innovation projects influence diversity. In this paper we study the influence of characteristics of EU-funded nanotechnology projects on the creation of technological diversity. In addition to actor diversity and the network of the project, we also include novel variables that have a plausible influence on diversity creation: the degree of multi-disciplinarity of the project and the size of the joint knowledge base of project partners. We apply topic modelling (Latent Dirichlet allocation) as a novel method to categorize technological alternatives. Using an ordinal logistic regression model, our results show that the largest contribution to diversity comes from the multi-disciplinary nature of a project. The joint knowledge base of project partners and the geographical distance between them were positively associated with technological diversity creation. In contrast, the number and diversity of actors and the degree of clustering showed a negative association with technological diversity creation. These results extend current micro-level explanations of how the diversity of an emerging technology is created. The contribution of this study could also be helpful for policy makers to influence the level of diversity in a technological field, and hence to contribute to survival of emerging technologies.

JTD Keywords: Innovation projects, Multi-disciplinarity, Nanotechnology, Social networks, Technological diversity, Topic models


Páez-Avilés, C., Juanola-Feliu, E., Samitier, J., (2018). Cross-fertilization of Key Enabling Technologies: An empirical study of nanotechnology-related projects based on innovation management strategies Journal of Engineering and Technology Management 49, 22-45

In this empirical study, we have analysed three innovation management strategies that could be influencing the process of cross-fertilization of KETs (Key Enabling Technologies), currently being fostered by European initiatives. To do so, we have interviewed Nanotechnology-related project leaders participating in Horizon 2020. Results from a MCA (Multiple Correspondence Analysis) have shown that higher levels of cross-fertilization of KETs are associated with customer/market-oriented projects developed in informal networks characterized by a moderately heterogeneous knowledge, with a high level of involvement in nanotechnologies. With these outcomes, we argue that absorptive capacities and dynamic capabilities of organizations are decisive in a technologically convergent approach, lead by open innovation strategies.

JTD Keywords: Cross-fertilization, Innovation management strategies, Innovation projects, KETs, Nanotechnology


Prescott, T. J., Verschure, P. F. M. J., (2018). Living machines: An introduction Living Machines: A Handbook of Research in Biomimetic and Biohybrid Systems (ed. Prescott, T. J., Lepora, Nathan, Verschure, P.), Oxford Scholarship (Oxford, UK) , 3-14

Biomimetics is the development of novel technologies through the distillation of principles from the study of biological systems. Biohybrid systems are formed by at least one biological component—an already existing living system—and at least one artificial, newly engineered component. The development of either biomimetic or biohybrid systems requires a deep understanding of the operation of living systems, and the two fields are united under the theme of “living machines”—the idea that we can construct artifacts that not only mimic life but share some of the same fundamental principles. This chapter sets out the philosophy and history underlying this Living Machines approach and sets the scene for the remainder of this book.

JTD Keywords: Biohybrids, Biological principles, Biomimetics, History of technology, Living machines, Technology ethics


Prescott, T. J., Lepora, Nathan, Verschure, P., (2018). Living machines: A handbook of research in biomimetics and biohybrid systems Oxford Scholarship , 1-623

Biomimetics is the development of novel technologies through the distillation of ideas from the study of biological systems. Biohybrids are formed through the combination of at least one biological component—an existing living system—and at least one artificial, newly engineered component. These two fields are united under the theme of Living Machines—the idea that we can construct artifacts that not only mimic life but also build on the same fundamental principles. The research described in this volume seeks to understand and emulate life’s ability to self-organize, metabolize, grow, and reproduce; to match the functions of living tissues and organs such as muscles, skin, eyes, ears, and neural circuits; to replicate cognitive and physical capacities such as perception, attention, locomotion, grasp, emotion, and consciousness; and to assemble all of these elements into integrated systems that can hold a technological mirror to life or that have the capacity to merge with it. We conclude with contributions from philosophers, ethicists, and futurists on the potential impacts of this remarkable research on society and on how we see ourselves.

JTD Keywords: Novel technologies, Biomimetics, Biohybrids, Living systems, Living machines, Biological principles, Technology ethics, Societal impacts


Gállego, Isaac, Manning, Brendan, Prades, Joan Daniel, Mir, Mònica, Samitier, Josep, Eritja, Ramon, (2017). DNA-origami-driven lithography for patterning on gold surfaces with sub-10 nm resolution Advanced Materials 29, 1603233

Agusil, Juan Pablo, Torras, Núria, Duch, Marta, Esteve, Jaume, Pérez-García, Lluïsa, Samitier, Josep, Plaza, José A., (2017). Highly anisotropic suspended planar-array chips with multidimensional sub-micrometric biomolecular patterns Advanced Functional Materials 27, 1605912

Suspended planar-array (SPA) chips embody millions of individual miniaturized arrays to work in extremely small volumes. Here, the basis of a robust methodology for the fabrication of SPA silicon chips with on-demand physical and chemical anisotropies is demonstrated. Specifically, physical traits are defined during the fabrication process with special focus on the aspect ratio, branching, faceting, and size gradient of the final chips. Additionally, the chemical attributes augment the functionality of the chips with the inclusion of complete coverage or patterns of selected biomolecules on the surface of the chips with contact printing techniques, offering an extremely high versatility, not only with the choice of the pattern shape and distribution but also in the choice of biomolecular inks to pattern. This approach increases the miniaturization of printed arrays in 3D structures by two orders of magnitude compared to those previously demonstrated. Finally, functional micrometric and sub-micrometric patterned features are demonstrated with an antibody binding assay with the recognition of the printed spots with labeled antibodies from solution. The selective addition of physical and chemical attributes on the suspended chips represents the basis for future biomedical assays performed within extremely small volumes.

JTD Keywords: Microcontact printing, Microparticles, Molecular multiplexing, Polymer pen lithography, Silicon chip technology


Aláez-Versón, C. R., Lantero, E., Fernàndez-Busquets, X., (2017). Heparin: New life for an old drug Nanomedicine 12, (14), 1727-1744

Heparin is one of the oldest drugs, which nevertheless remains in widespread clinical use as an inhibitor of blood coagulation. The history of its identification a century ago unfolded amid one of the most fascinating scientific controversies turning around the distribution of credit for its discovery. The composition, purification and structure-function relationship of this naturally occurring glycosaminoglycan regarding its classical role as anticoagulant will be dealt with before proceeding to discuss its therapeutic potential in, among other, inflammatory and infectious disease, cancer treatment, cystic fibrosis and Alzheimer's disease. The first bibliographic reference hit using the words 'nanomedicine' and 'heparin' is as recent as 2008. Since then, nanomedical applications of heparin have experienced an exponential growth that will be discussed in detail, with particular emphasis on its antimalarial activity. Some of the most intriguing potential applications of heparin nanomedicines will be exposed, such as those contemplating the delivery of drugs to the mosquito stages of malaria parasites.

JTD Keywords: Anopheles, Antimalarial drugs, Heparin, Malaria, Mosquitoes, Nanomedicine, Nanotechnology, Plasmodium, Targeted drug delivery


Gállego, Isaac, Manning, Brendan, Prades, Joan Daniel, Mir, Mónica, Samitier, Josep, Eritja, Ramon, (2017). DNA-Origami-Aided Lithography for Sub-10 Nanometer Pattern Printing Proceedings Eurosensors 2017 , MDPI (Paris, France) 1, (4), 325

We report the first DNA-based origami technique that can print addressable patterns on surfaces with sub-10 nm resolution. Specifically, we have used a two-dimensional DNA origami as a template (DNA origami stamp) to transfer DNA with pre-programmed patterns (DNA ink) on gold surfaces. The DNA ink is composed of thiol-modified staple strands incorporated at specific positions of the DNA origami stamp to create patterns upon thiol-gold bond formation on the surface (DNA ink). The DNA pattern formed is composed of unique oligonucleotide sequences, each of which is individually addressable. As a proof-of-concept, we created a linear pattern of oligonucleotide-modified gold nanoparticles complementary to the DNA ink pattern. We have developed an in silico model to identify key elements in the formation of our DNA origami-driven lithography and nanoparticle patterning as well as simulate more complex nanoparticle patterns on surfaces.

JTD Keywords: DNA nanotechnology, Lithography, Nanopatterning, Gold nanoparticles, Metasurfaces


Fernàndez-Busquets, X., (2016). Novel strategies for Plasmodium-targeted drug delivery Expert Opinion on Drug Delivery , 13, (7), 919-922

Paéz Aviles, C. , Juanola-Feliu, E., Tahirbegi, I.B. , Mir, M., Gonzalez-Piñero, M., Samitier, J., (2015). Innovation and technology transfer of medical devices fosterd by cross disciplinary communities of practitioners International Journal of Innovation Management , 19, (6), 1540012

Commercialisation of emerging technological innovations such as medical devices can be a time-consuming and lengthy process resulting in a market entrance failure. To tackle this general problem, major challenges are being analysed, principally focusing on the role of Communities of Practitioners (CoPs) in the process of effective transfer of high-value emerging technologies from academia to market. Taking a case study approach, this document describes the role of a cross-disciplinary CoP in the technology transfer process within a convergence scenario. The case presented is a sensor array for ischemia detection developed by different practitioners from diverse organisations: university, research institution, hospital, and a scientific park. The analysis also involves the innovation ecosystem where all stakeholders are taken into account. This study contributes to a better understanding of the managerial implications of CoP fostering technology transfer and innovation, principally focused on the current need for new biomedical technologies and tools.

JTD Keywords: CoP, Medical devices, Innovation, Technology transfer, Ischemia


Pujol, A., Urbán, P., Riera, C., Fisa, R., Molina, I., Salvador, F., Estelrich, J., Fernàndez-Busquets, X., (2014). Application of quantum dots to the study of liposome targeting in leishmaniasis and malaria International Journal of Theoretical and Applied Nanotechnology , 2, (1), 1-8

Nanotechnological devices for therapeutic applications are massively addressed to diseases prevalent in the developed world, particularly cancer, because of the wrong assumption (for both ethical and technical reasons) that nanomedicines are too expensive and thus they can not be applied to diseases of poverty. Here we have applied quantum dots to study at the cellular level the delivery of the contents of liposomes to erythrocytes infected by the malaria parasite Plasmodium falciparum, and to macrophages infected by the leishmaniasis causative agent Leishmania infantum. A number of works have reported on the encapsulation in liposomes of drugs against both diseases as a strategy to increase therapeutic efficacy and decrease unspecific toxicity. Liposome-carried drugs end up inside Plasmodium-infected red blood cells (pRBCs) and in the phagolysosome system of Leishmania-infected macrophages but some knowledge gaps still obscure subcellular events related to these processes. As a proof of concept, we have used confocal fluorescence microscopy to follow the fate in pRBCs and infected macrophages of quantum dots encapsulated in liposomes, and of lysosomes, leishmaniasis and malaria parasites, nuclei, and phagosomes. Our data indicate that liposomes merge their lipid bilayers with pRBC plasma membranes but are engulfed by macrophages, where they fuse with lysosomes. Lysosomes have not been observed to join with phagosomes harboring single Leishmania parasites, whereas in phagosomes where the parasite has divided there is lysosome-specific fluorescence with a concomitant disappearance of lysosomes from the cytosol. In later stages, all the lysosome-specific label is found inside phagosomes whereas the phagosomal marker cadaverine strongly stains the macrophage nucleus, suggesting that Leishmania infection induces in its later stages nuclear degeneration and, possibly, apoptosis of the host cell. These results indicate that induction of macrophage apoptosis should be explored as a possible strategy used by Leishmania to prepare its egress.

JTD Keywords: Leishmania infantum, Leishmaniasis Liposomes, Malaria, Nanomedicine, Nanotechnology, Plasmodium falciparum, Quantum dots


Fernàndez-Busquets, X., (2014). Toy kit against malaria: Magic bullets, LEGO, Trojan horses and Russian dolls Therapeutic Delivery , 5, (10), 1049-1052

Gramse, G., Kasper, M., Fumagalli, L., Gomila, G., Hinterdorfer, P., Kienberger, F., (2014). Calibrated complex impedance and permittivity measurements with scanning microwave microscopy Nanotechnology 25, (14), 145703 (8)

We present a procedure for calibrated complex impedance measurements and dielectric quantification with scanning microwave microscopy. The calibration procedure works in situ directly on the substrate with the specimen of interest and does not require any specific calibration sample. In the workflow tip-sample approach curves are used to extract calibrated complex impedance values and to convert measured S11 reflection signals into sample capacitance and resistance images. The dielectric constant of thin dielectric SiO2 films were determined from the capacitance images and approach curves using appropriate electrical tip-sample models and the εr value extracted at f = 19.81 GHz is in good agreement with the nominal value of εr ∼ 4. The capacitive and resistive material properties of a doped Si semiconductor sample were studied at different doping densities and tip-sample bias voltages. Following a simple serial model the capacitance-voltage spectroscopy curves are clearly related to the semiconductor depletion zone while the resistivity is rising with falling dopant density from 20 Ω to 20 kΩ. The proposed procedure of calibrated complex impedance measurements is simple and fast and the accuracy of the results is not affected by varying stray capacitances. It works for nanoscale samples on either fully dielectric or highly conductive substrates at frequencies between 1 and 20 GHz.

JTD Keywords: Complex impedance, Dielectric constant, Nanotechnology: calibration, Resistivity, Scanning microwave microscopy


Fresco-Cala, B., Jimenez-Soto, J. M., Cardenas, S., Valcarcel, M., (2014). Single-walled carbon nanohorns immobilized on a microporous hollow polypropylene fiber as a sorbent for the extraction of volatile organic compounds from water samples Microchimica Acta , 181, (9-10), 1117-1124

We have evaluated the behavior of single-walled carbon nanohorns as a sorbent for headspace and direct immersion (micro)solid phase extraction using volatile organic compounds (VOCs) as model analytes. The conical carbon nanohorns were first oxidized in order to increase their solubility in water and organic solvents. A microporous hollow polypropylene fiber served as a mechanical support that provides a high surface area for nanoparticle retention. The extraction unit was directly placed in the liquid sample or the headspace of an aqueous standard or a water sample to extract and preconcentrate the VOCs. The variables affecting extraction have been optimized. The VOCs were then identified and quantified by GC/MS. We conclude that direct immersion of the fiber is the most adequate method for the extraction of VOCs from both liquid samples and headspace. Detection limits range from 3.5 to 4.3 ng L-1 (excepted for toluene with 25 ng L-1), and the precision (expressed as relative standard deviation) is between 3.9 and 9.6 %. The method was applied to the determination of toluene, ethylbenzene, various xylene isomers and styrene in bottled, river and tap waters, and the respective average recoveries of spiked samples are 95.6, 98.2 and 86.0 %.

JTD Keywords: (Micro)solid phase extraction, Nanotechnology, Oxidized single-walled carbon nanohorns, Volatiles compounds, Waters


Juanola-Feliu, E., Miribel-Català, P. L., Avilés, C. P., Colomer-Farrarons, J., González-Piñero, M., Samitier, J., (2014). Design of a customized multipurpose nano-enabled implantable system for in-vivo theranostics Sensors 14, (10), 19275-19306

The first part of this paper reviews the current development and key issues on implantable multi-sensor devices for in vivo theranostics. Afterwards, the authors propose an innovative biomedical multisensory system for in vivo biomarker monitoring that could be suitable for customized theranostics applications. At this point, findings suggest that cross-cutting Key Enabling Technologies (KETs) could improve the overall performance of the system given that the convergence of technologies in nanotechnology, biotechnology, micro&nanoelectronics and advanced materials permit the development of new medical devices of small dimensions, using biocompatible materials, and embedding reliable and targeted biosensors, high speed data communication, and even energy autonomy. Therefore, this article deals with new research and market challenges of implantable sensor devices, from the point of view of the pervasive system, and time-to-market. The remote clinical monitoring approach introduced in this paper could be based on an array of biosensors to extract information from the patient. A key contribution of the authors is that the general architecture introduced in this paper would require minor modifications for the final customized bio-implantable medical device.

JTD Keywords: Biocompatible, Biosensor, Biotelemetry, Implantable multi-sensor, Innovation, KET, Nanomedicine, Personalized medicine, Biotelemetry, Innovation, Medical nanotechnology, Biocompatible, Implantable system, In-vivo, KET, Multi sensor, Personalized medicines, Theranostics, Biosensors


Juanola-Feliu, Esteve, Colomer-Farrarons, Jordi, Miribel-Català, Pere, González-Piñero, Manel, Samitier, Josep, (2014). Nano-enabled implantable device for glucose monitoring Implantable Bioelectronics (ed. Katz, Evgeny), Wiley-VCH Verlag GmbH & Co. KGaA (Weinheim, Germany) , 247-263

This chapter contains sections titled: * Introduction * Biomedical Devices for In Vivo Analysis * Conclusions and Final Recommendations * References

JTD Keywords: Technology transfer, Innovation management, Nanotechnology, Nanobiosensor, Diabetes, Biomedical device, Implantable biosensors


Pujol, A., Riera, C., Fisa, R., Molina, I., Salvador, F., Estelrich, J., Urbán, P., Fernàndez-Busquets, X., (2013). Nanomedicine for infectious diseases: Application of quantum dots encapsulated in immunoliposomes to the study of targeted drug delivery against leishmaniasis and malaria Proceedings of the 4th International Conference on Nanotechnology: Fundamentals and Applications. 4th International Conference on Nanotechnology: Fundamentals and Applications , International ASET Inc. (Ontario, Canada) , 1-8

Nanotechnological devices for therapeutic applications are massively addressed to diseases prevalent in the developed world, particularly cancer, because of the wrong assumption (for both ethical and technical reasons) that nanomedicines are too expensive and thus they can not be applied to diseases of poverty. Here we have applied quantum dots to study at the cellular level the delivery of the contents of immunoliposomes to erythrocytes infected by the malaria parasite Plasmodium falciparum, and to macrophages infected by the leishmaniasis causative agent Leishmania infantum. A number of works have reported on the encapsulation in liposomes of drugs against both diseases as a strategy to increase therapeutic efficacy and decrease unspecific toxicity. Liposome-carried drugs end up inside Plasmodium-infected red blood cells (pRBCs) and in the phagolysosome system of Leishmania-infected macrophages but some knowledge gaps still obscure subcellular events related to these processes. As a proof of concept, we have used confocal fluorescence microscopy to follow the fate in pRBCs and L. infantum-infected macrophages of quantum dots encapsulated in liposomes, and of lysosomes, Leishmania and Plasmodium parasites, nuclei, and phagosomes. Our data indicate that liposomes merge their lipid bilayers with pRBC plasma membranes but are engulfed by macrophages, where they fuse with lysosomes. Lysosomes have not been observed to join with phagosomes harboring single L. infantum parasites, whereas in phagosomes where the parasite has divided there is lysosome-specific fluorescence with a concomitant disappearance of lysosomes from the cytosol. In later stages, all the lysosome-specific label is found inside phagosomes whereas the phagosomal marker cadaverine strongly stains the macrophage nucleus, suggesting that L. infantum infection induces in its later stages nuclear degeneration and possibly, apoptosis of the host cell. These results indicate that induction of macrophage apoptosis should be explored as a possible strategy used by L. infantum to prepare its egress.

JTD Keywords: Leishmania infantum, Leishmaniasis, Liposomes, Malaria, Nanomedicine, Nanotechnology, Plasmodium falciparum, Quantum dots


Tejeda-Montes, E., Smith, K. H., Poch, M., López-Bosque, M. J., Martín, L., Alonso, M., Engel, E., Mata, Alvaro., (2012). Engineering membrane scaffolds with both physical and biomolecular signaling Acta Biomaterialia 8, (3), 998-1009

We report on the combination of a top-down and bottom-up approach to develop thin bioactive membrane scaffolds based on functional elastin-like polymers (ELPs). Our strategy combines ELP cross-linking and assembly, and a variety of standard and novel micro/nanofabrication techniques to create self-supporting membranes down to ∼500 nm thick that incorporate both physical and biomolecular signals, which can be easily tailored for a specific application. In this study we used an ELP that included the cell-binding motif arginine-glycine-aspartic acid-serine (RGDS). Furthermore, fabrication processes were developed to create membranes that exhibited topographical patterns with features down to 200 nm in lateral dimensions and up to 10 μm in height on either one or both sides, uniform and well-defined pores, or multiple ELP layers. A variety of processing parameters were tested in order to optimize membrane fabrication, including ELP and cross-linker concentration, temperature, reaction time and ambient humidity. Membrane micro/nanopatterning, swelling and stiffness were characterized by atomic force microscopy, nanoindentation tests and scanning electron microscopy. Upon immersion in phosphate-buffered saline and an increase in temperature from 25 to 40°C, membranes exhibited a significant increase in surface stiffness, with the reduced Young's modulus increasing with temperature. Finally, rat mesenchymal stem cells were cultured on thin RGDS-containing membranes, which allowed cell adhesion, qualitatively enhanced spreading compared to membranes without RGDS epitopes and permitted proliferation. Furthermore, cell morphology was drastically affected by topographical patterns on the surface of the membranes.

JTD Keywords: Elastin-like polymers, Membranes, Nanotechnology, Scaffolds, Tissue engineering


Valle-Delgado, J. J., Liepina, I., Lapidus, D., Sabaté, R., Ventura, S., Samitier, J., Fernàndez-Busquets, X., (2012). Self-assembly of human amylin-derived peptides studied by atomic force microscopy and single molecule force spectroscopy Soft Matter 8, (4), 1234-1242

The self-assembly of peptides and proteins into amyloid fibrils of nanometric thickness and up to several micrometres in length, a phenomenon widely observed in biological systems, has recently aroused a growing interest in nanotechnology and nanomedicine. Here we have applied atomic force microscopy and single molecule force spectroscopy to study the amyloidogenesis of a peptide derived from human amylin and of its reverse sequence. The spontaneous formation of protofibrils and their orientation along well-defined directions on graphite and DMSO-coated graphite substrates make the studied peptides interesting candidates for nanotechnological applications. The measured binding forces between peptides correlate with the number of hydrogen bonds between individual peptides inside the fibril structure according to molecular dynamics simulations.

JTD Keywords: Amyloid fibril, Amyloidogenesis, Binding forces, Fibril structure, Graphite substrate, Molecular dynamics simulations, Nanometrics, Protofibrils, Single molecule force spectroscopy, Spontaneous formation, Atomic force microscopy, Atomic spectroscopy, Graphite, Hydrogen bonds, Medical nanotechnology, Molecular dynamics, Molecular physics, Self assembly, Thickness measurement, Peptides


Juanola-Feliu, E., Colomer-Farrarons, J., Miribel-Català , P., Samitier, J., Valls-Pasola, J., (2012). Market challenges facing academic research in commercializing nano-enabled implantable devices for in-vivo biomedical analysis Technovation , 32, (3-4), 193-204

This article reports on the research and development of a cutting-edge biomedical device for continuous in-vivo glucose monitoring. This entirely public-funded process of technological innovation has been conducted at the University of Barcelona within a context of converging technologies involving the fields of medicine, physics, chemistry, biology, telecommunications, electronics and energy. The authors examine the value chain and the market challenges faced by in-vivo implantable biomedical devices based on nanotechnologies. In so doing, they trace the process from the point of applied research to the final integration and commercialization of the product, when the social rate of return from academic research can be estimated. Using a case-study approach, the paper also examines the high-tech activities involved in the development of this nano-enabled device and describes the technology and innovation management process within the value chain conducted in a University-Hospital-Industry-Administration-Citizens framework. Here, nanotechnology is seen to represent a new industrial revolution, boosting the biomedical devices market. Nanosensors may well provide the tools required for investigating biological processes at the cellular level in vivo when embedded into medical devices of small dimensions, using biocompatible materials, and requiring reliable and targeted biosensors, high speed data transfer, safely stored data, and even energy autonomy.

JTD Keywords: Biomedical device, Diabetes, Innovation management, Nanobiosensor, Nanotechnology, Research commercialization, Technology transfer, Academic research, Applied research, Barcelona, Biocompatible materials, Biological process, Biomedical analysis, Biomedical devices, Cellular levels, Converging technologies, Glucose monitoring, High-speed data transfer, Implantable biomedical devices, Implantable devices, In-vivo, Industrial revolutions, Innovation management, Medical Devices, Nanobiosensor, Rate of return, Research and development, Technological innovation, Value chains, Biological materials, Biomedical engineering, Biosensors, Commerce, Data transfer, Earnings, Engineering education, Glucose, Implants (surgical), Industrial research, Innovation, Medical problems, Nanosensors, Nanotechnology, Technology transfer, Equipment


Navarro, M., Planell, J. A., (2012). Is nanotechnology the key to unravel and engineer biological processes? Nanotechnology in Regenerative Medicine - Methods and Protocols (Methods in Molecular Biology) (ed. Navarro, M., Planell, J. A.), Springer (New York, USA) 811, 1-16

Regenerative medicine is an emerging field aiming to the development of new reparative strategies to treat degenerative diseases, injury, and trauma through developmental pathways in order to rebuild the architecture of the original injured organ and take over its functionality. Most of the processes and interactions involved in the regenerative process take place at subcellular scale. Nanotechnology provides the tools and technology not only to detect, to measure, or to image the interactions between the different biomolecules and biological entities, but also to control and guide the regenerative process. The relevance of nanotechnology for the development of regenerative medicine as well as an overview of the different tools that contribute to unravel and engineer biological systems are presented in this chapter. In addition, general data about the social impact and global investment in nanotechnology are provided.

JTD Keywords: Nanotechnology, Regenerative medicine, Tissue engineering


Fernandez, Javier G., Samitier, Josep, Mills, Christopher A., (2011). Simultaneous biochemical and topographical patterning on curved surfaces using biocompatible sacrificial molds Journal of Biomedical Materials Research - Part A , 98A, (2), 229-234

A method for the simultaneous (bio)chemical and topographical patterning of enclosed structures in poly(dimethyl siloxane) (PDMS) is presented. The simultaneous chemical and topography transference uses a water-soluble chitosan sacrificial mold to impart a predefined pattern with micrometric accuracy to a PDMS replica. The method is compared to conventional soft-lithography techniques on planar surfaces. Its functionality is demonstrated by the transference of streptavidin directly to the surface of the three-dimensional PDMS structures as well as indirectly using streptavidin-loaded latex nanoparticles. The streptavidin immobilized on the PDMS is tested for bioactivity by coupling with fluorescently labeled biotin. This proves that the streptavidin is immobilized on the PDMS surface, not in the bulk of the polymer, and is therefore accessible for use as signaling/binding element in micro and bioengineering. The use of a biocompatible polymer and processes enables the technique to be used for the chemical patterning of tissue constructions.

JTD Keywords: Biotechnology, Chitosan, Microfabrication, MEMs, Soft lithography


Juanola-Feliu, E., Colomer-Farrarons, J., Miribel-Catala, P., Samitier, J., Valls-Pasola, J., (2011). Challenges facing academic research in commercializing event-detector implantable devices for an in-vivo biomedical subcutaneous device for biomedical analysis Proceedings of the SPIE - The International Society for Optical Engineering VLSI Circuits and Systems V (ed. -----), SPIE - The International Society for Optical Engineering, USA (Prague, Czech Republic) 8067, 80670P

It is widely recognized that the welfare of the most advanced economies is at risk, and that the only way to tackle this situation is by controlling the knowledge economies and dealing with. To achieve this ambitious goal, we need to improve the performance of each dimension in the "knowledge triangle": education, research and innovation. Indeed, recent findings point to the importance of strategies of adding-value and marketing during R+D processes so as to bridge the gap between the laboratory and the market and so ensure the successful commercialization of new technology-based products. Moreover, in a global economy in which conventional manufacturing is dominated by developing economies, the future of industry in the most advanced economies must rely on its ability to innovate in those high-tech activities that can offer a differential added-value, rather than on improving existing technologies and products. It seems quite clear, therefore, that the combination of health (medicine) and nanotechnology in a new biomedical device is very capable of meeting these requisites. This work propose a generic CMOS Front-End Self-Powered In-Vivo Implantable Biomedical Device, based on a threeelectrode amperometric biosensor approach, capable of detecting threshold values for targeted concentrations of pathogens, ions, oxygen concentration, etc. Given the speed with which diabetes can spread, as diabetes is the fastest growing disease in the world, the nano-enabled implantable device for in-vivo biomedical analysis needs to be introduced into the global diabetes care devices market. In the case of glucose monitoring, the detection of a threshold decrease in the glucose level it is mandatory to avoid critic situations like the hypoglycemia. Although the case study reported in this paper is complex because it involves multiple organizations and sources of data, it contributes to extend experience to the best practices and models on nanotechnology applications and commercialization.

JTD Keywords: Biomedical equipment, Diseases, Nanotechnology


Toset, J., Gomila, G., (2010). Three-dimensional manipulation of gold nanoparticles with electro-enhanced capillary forces Applied Physics Letters , 96, (4), 043117

We demonstrate the possibility to manipulate 25 nm radius gold nanoparticles in the three spatial dimensions with an atomic force microscope with the use of electroenhanced capillary forces. We show that an enhanced water-bridge can be electrostatically induced between a conducting probe and a metallic nanoparticle by the application of a voltage pulse, which is able to exert a pulling capillary force on the nanoparticle strong enough to detach it from the substrate. The nanoparticle can then be moved, attached to the probe, and placed back to the desired location on the substrate simply by contacting it.

JTD Keywords: Atomic force microscopy, Capillarity, Gold, Nanoparticles, Nanotechnology


Fernandez, Javier G., Mills, C. A., Samitier, J., (2009). Complex microstructured 3D surfaces using chitosan biopolymer Small 5, (5), 614-620

A technique for producing micrometer-scale structures over large, nonplanar chitosan surfaces is described. The technique makes use of the rheological characteristics (deformability) of the chitosan to create freestanding, three-dimensional scaffolds with controlled shapes, incorporating defined microtopography. The results of an investigation into the technical limits of molding different combinations of shapes and microtopographies are presented, highlighting the versatility of the technique when used irrespectively with inorganic or delicate organic moulds. The final, replicated scaffolds presented here are patterned with arrays of one-micrometer-tall microstructures over large areas. Structural integrity is characterized by the measurement of structural degradation. Human umbilical vein endothelial cells cultured on a tubular scaffold show that early cell growth is conditioned by the microtopography and indicate possible uses for the structures in biomedical applications. For those applications requiring improved chemical and mechanical resistance, the structures can be replicated in poly(dimethyl siloxane).

JTD Keywords: Biocompatible Materials/ chemistry, Cell Adhesion, Cell Culture Techniques/ methods, Cell Proliferation, Cells, Cultured, Chitosan/ chemistry, Crystallization/methods, Endothelial Cells/ cytology/ physiology, Humans, Materials Testing, Nanostructures/ chemistry/ ultrastructure, Nanotechnology/methods, Particle Size, Surface Properties, Tissue Engineering/methods


Farre, R., Navajas, D., (2009). Quality control: A necessary, but sometimes overlooked, tool for improving respiratory medicine European Respiratory Journal 33, (4), 722-723

The importance of quality control in both general and respiratory medicine has increased in parallel with the complexity of healthcare provision. Only a few decades ago, the respiratory physician and/or scientist had a very limited number of diagnostic and therapeutic tools available and, moreover, medical practice was based almost exclusively on the personal interaction between doctor and patient. Consequently, at that time the quality of the respiratory healthcare depended entirely on the professional competence of the doctor. Although nowadays the relationship between physician and patient undoubtedly still lies at the heart of respiratory medical practice, the quality of the medical service received by the patient also depends on many other participants in a complex healthcare network: various medical specialists, lung function technicians, nurses, respiratory therapists, social workers and administrative staff. Accordingly, several quality control programmes are applied in order to avoid, or at least to reduce, errors in diagnosis, improper performance of procedures, errors in medication, and failure to supervise or monitor care or recognise complications associated with treatment

JTD Keywords: Airway pressure devices, Clinical-trial, Standardization, Spirometry, Lung, Home, Ventilators, Publication, Performance, Technology


Engel, E., Michiardi, A., Navarro, M., Lacroix, D., Planell, J. A., (2008). Nanotechnology in regenerative medicine: the materials side Trends in Biotechnology , 26, (1), 39-47

Regenerative medicine is an emerging multidisciplinary field that aims to restore, maintain or enhance tissues and hence organ functions. Regeneration of tissues can be achieved by the combination of living cells, which will provide biological functionality, and materials, which act as scaffolds to support cell proliferation. Mammalian cells behave in vivo in response to the biological signals they receive from the surrounding environment, which is structured by nanometre-scaled components. Therefore, materials used in repairing the human body have to reproduce the correct signals that guide the cells towards a desirable behaviour. Nanotechnology is not only an excellent tool to produce material structures that mimic the biological ones but also holds the promise of providing efficient delivery systems. The application of nanotechnology to regenerative medicine is a wide issue and this short review will only focus on aspects of nanotechnology relevant to biomaterials science. Specifically, the fabrication of materials, such as nanoparticles and scaffolds for tissue engineering, and the nanopatterning of surfaces aimed at eliciting specific biological responses from the host tissue will be addressed.

JTD Keywords: Animals, Biocompatible Materials/ metabolism, Humans, Nanoparticles, Nanotechnology/ methods, Regenerative Medicine/ methods, Tissue Scaffolds


Castellarnau, M., Zine, N., Bausells, J., Madrid, C., Juarez, A., Samitier, J., Errachid, A., (2008). ISFET-based biosensor to monitor sugar metabolism in bacteria Materials Science & Engineering C 5th Maghreb-Europe Meeting on Materials and their Applicatons for Devices and Physical, Chemical and Biological Sensors (ed. -----), Elsevier Science (Mahdia, Tunisia) 28, (5-6), 680-685

We report the use of ion-selective field effect transistor devices (ISFETs) with an integrated pseudo-reference electrode for on-line monitoring of bacterial metabolism by monitoring of the pH variation. As a model we tested the ability of Lactobacillus strains to ferment sugars, producing lactic acid, which results in a decrease in pH in the suspension medium. We have tested and compared sugar uptake by L. sakei and a L. curvatus strains. The results obtained show that it is possible to distinguish between both types of Lactobacillus strains through their pattern of ribose uptake. The use of ISFETs represents a non-invasive methodology that can be used to monitor biological activity in a wide variety of systems.

JTD Keywords: Lactobacillus-sakei, Technology, Sensors, System, Growth, Cells, State, Meat